Roger L. Miesfeld
University Distinguished ProfessorRoger L. Miesfeld
University Distinguished ProfessorDegrees and Appointments
- BS, MS 1973-79, San Diego State University
- PhD 1979-83, Stony Brook University
- Fellow 1983-87, UC San Francisco
Awards and Honors
- CoS Distinguished Achievement in Science Education, 2021
- University Distinguished Professor, 2018
- Tech Launch Arizona Campus Collaborator of the Year, 2018
- UA Honors College Faculty Excellence Award, 2012
- Chair, American Cancer Society TBE Panel, 1999-2001
- Chair, Gordon Conference on Cancer, 1994
- Fellow & Scholar, Leukemia Society America, 1986-1994
- Fellow, Jane Coffin Childs Memorial Fund, 1983-1986
Research Specialties: Chemical Biology, Chemistry & Biochemistry Education, Metabolism, Signaling, and Regulation, Nucleic Acids and Genomes, Protein and Membrane Biochemistry
Research
Mosquitoes are human disease vectors that transmit pathogens through blood feeding. These human pathogens include the malarial parasite, Dengue, Zika, and yellow fever viruses, and West Nile virus. Dengue fever and malaria continue to have a significant health and economic impact worldwide, and therefore new approaches are needed for controlling the spread of these diseases. Mosquitoes are highly evolved blood sucking insects that have been shown to efficiently ingest, metabolize, and transport blood meal nutrients from the midgut lumen to the ovaries to produce eggs. Although we have a basic knowledge of these processes at the physiological level, it requires a molecular understanding of metabolic regulation in mosquitoes in order to target blood meal metabolism as transmission blocking or vector control strategy. Since highly coordinated endocytotic and exocytotic processes in midgut, fat body, and ovary tissues likely play a central role in metabolic flux following the blood meal, we are investigating vesicle transport in Aedes aegypti and Anopheles stephensi mosquitoes. Read More.