Professor
Degrees and Appointments
- B.A. 1997, Northwestern University
- Ph.D. 2002, Carnegie Mellon University
- Postdoctoral Fellow 2002-2004, IBM Almaden Research Center / UC Berkeley
- Professor, UArizona, Chemistry & Biochemistry since 2004
- Professor (joint) UArizona, College of Optical Sciences since 2022
Field of Study: Organic Chemistry
Awards and Honors
- Fellow of the Royal Society of Chemistry, 2021
- U.S. National Academy of Inventors, Senior Member, 2019
- Fellow of the American Chemical Society, Division of Polymeric Materials: Science & Engineering, 2019
- Arizona Academic Innovator of the Year Award (from Arizona Governor's Office), 2017
- Best Paper Award for 2016, Microscopy Society of America, 2017
- Tech Launch Arizona Innovation and Impact Award in Chemistry, University of Arizona, 2016
- Catalyst Award for Applied Chemical Sciences, University of Arizona, 2016, 2017
- Frontiers in Science Lecture, Kavli Institute-U.S. National Academy of Sciences, 2015
- Kavli Fellow, U.S. National Academy of Science, 2011
- INSIC Technical Achievement Award for Magnetic Tape, 2009
- Alfred P. Sloan Research Fellowship, 2009
- IBM Faculty Award, 2007
- Office of Naval Research Young Investigator Award, 2007
- NSF CAREER Award, 2007
Research Specialties: Energy Science, Materials and Polymer Chemistry, Surface and Solid State, Synthesis/Synthetic Methods Development
Research
Elemental Sulfur: A novel, abundant feedstock for polymers and nanocomposite materials
We have pioneered the utilization of elemental sulfur for novel polymers and nanocomposites. Sulfur is commonly used as a vulcanizing agent in the crosslinking of rubber for tires, however the use of elemental sulfur as the primary monomer, or comonomer for polymeric materials has not been widely explored. Elemental sulfur is currently produced on the level of 70 million tons annually, the majority of which is thru hydrodesulfurization of crude petroleum. Consequently, over 6 million tons of elemental sulfur is generated in excess, which creates exciting opportunities to develop new chemistry and processing to utilize sulfur as a feedstock for polymers. We have invented a new polymerization process, termed, inverse vulcanization, to directly convert elemental sulfur into high sulfur content polymers (Nature Chemistry 2013), which has since launched this technology as a new field in polymer science. Sulfur exhibits a number of useful properties, such as, high charge capacity for Li-insertion electrochemistry and high refractive index. However, the chemical modification of sulfur into useful materials remains a difficult technical challenge. Toward this end, we are developing new polymerization and processing methods for the direct utilization of sulfur to prepare thermosetting polymeric sulfur and nanocomposite materials.
Key publications:
Pyun, J. Adv. Mater. 2014, 26, 3014; ACS Macro Letters, 2015, 4, 862; ACS Macro Lett. 2016, 5, 1152; ACS Macro Lett. 2017, 6, 500; ACS Macro Lett. 2018, 7, 875; Angew. Chem. Int. Ed.. 2019, 58, 17656; ACS Macro Lett. 2020, 9, 245; Science Advances 2020, 6, eabb5320; Adv. Opt. Mater. 2022, in press, DOI:10.1002/adom.202200176
High refractive index polymers for infrared optics and photonics
We have pioneered the development of ultra-high refractive polymers derived from the inverse vulcanization of elemental sulfur as the first class of optical polymers for infrared imaging and IR photonics. These polymers are termed, Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs) as a hybrid from elemental chalcogenides, such as, sulfur, selenium with organic comonomers.
We have a diverse and highly collaborative research term at the interface of synthetic organic chemistry, polymer chemistry, computational chemistry and optical sciences to prepare novel optical polymers and fabrication of these materials into plastic optics and photonic devices.
Artificial Enzymes for Catalytic Water-Splitting for Clean Hydrogen Production
Metal-containing polymers can combine the useful properties of polymers with the key functions of metal complexes. These metallopolymers are applicable to a wide range of areas such as photovoltaics, stimuli responsive materials and catalysis. Catalysis, for example, includes designing artificial metalloenzymes which can mimic the biological functionalities by engineering the environment of a metal complex using polymeric materials. FeFe-hydrogenase enzyme found in bacteria is an efficient H2 generation catalyst and there has been extensive research on making FeFe-H2ase mimics to produce H2 as a carbon-free energy carrier. We, for the first time, made a metalloinitiator from a FeFe-H2ase mimic to grow polymers via ATRP. The polymers not only provide water solubility and oxygen stability in neutral water but also enhance the activity of the complex by tuning the secondary coordination sphere of the mimic. We will discuss our most recent efforts to synthesize a difunctional metalloinitiator and metallopolymers grafted via ATRP.
Key Publications:
Pyun et al., Proceedings of the National Academy of Sciences 2020, 117, 32947; Macromol. Rapid Commun. 2020, 41, 1900424; Angew. Chem. Int. Ed. 2019, 58, 7537; ACS Macro Lett. 2018, 7, 1383; Angew. Chem. Int. Ed.. 2018, 57, 11898
Refractive Index Contrast Polymers: Photoresists for polymer waveguides, interconnects & photonic devices
We have developed a new class of optical polymers, termed, Refractive Index Contrast (RIC) Polymers, which are a class of photoresists that can be used as a “dry-write” film for waveguide and optical interconnect fabrication. These new optical polymers are designed to enable rapid device component integration of photonic devices for next generation semiconductor chip fabrication.
Key publications:
Pyun et al., ACS Macro Lett. 2020, 9, 416; J. Lightwave Technol. 2022, 40, 3839; Optics Materials Express 2022, 12, 1932
136)* “Natural Assembly of Electroactive Metallopolymers on the Electrode Surface: Enhanced Electrocatalytic Production of Hydrogen by [2Fe–2S] Metallopolymers in Neutral Water,” Clary, K.E.; Gibson, A.C.; Glass, R.S.; Pyun, J.; Lichtenberger, D.L.; JACS 2023, DOI: 10.1021/jacs.3c03379
135)* “On the Mechanism of the Inverse Vulcanization of Elemental Sulfur: Structural characterization of poly(Sulfur-random-(1,3-Diisopropenylbenzene)),” Bao, J.; Martin, K.P.; Kang, K.; Cho, E.; Bredas, J.-L; Glass, R.S.; Parker, W.O.; Njardarson, Pyun, J. JACS 2023, in press
134)* “π-Conjugated Carbon-Based Materials for Infra-Red Thermal Imaging,” Cho, E.; Pratik, S. M.; Pyun, J.; Coropceanu, V.; Bredas, J.-L. Adv. Opt. Mater. 2023, in press
133)* “Sulfenyl Chlorides: An Alternative Monomer Feedstock from Elemental Sulfur for Polymer Synthesis,” Kang, K.; Olikagu, C.; Lee, T.; Bao, J.; Molineux, J.; Holmen, L.N.; Martin, K.; Kim, K.-H. Bang, J.; Kumirov, V.K.; Glass, R.S.; Norwood, R.A.; Njardarson, J.; Pyun, J. JACS 2022, 144, 50, 23044–23052, https://doi.org/10.1021/jacs.2c10317
132)* “Waveguide-Based Spectroelectrochemical Characterization of Band Edge Energies in Submonolayers of CdSe Quantum Dots Tethered to Indium Tin Oxide Electrodes,” Sun, W.; Olikagu, C.; Carothers, K.J.; Pattadar, D.; Pyun, J.; Saavedra, S.S.; Armstrong, N.R. J. Phys. Chem. 2022, 126, 48, 20183–20195
131)* Ring-to-Chain Structural Relaxation of Elemental Sulfur upon Photoexcitation,” Cho, E.-K.; Pratik, S. M.; Pyun, J.; Coropceanu, V.; Bredas, J.-L. ACS Materials Lett. 2022, 4, 11, 2362–2367
130)* “Structural Characterization of Sulfur Derived Copolymers from Inverse Vulcanization: Part 1: Styrene,” J. Pyun, C.F. Carrozza, S. Silvano, L. Boggioni, S. Losio, M. Checchin, C. Olikagu, A. de Angelis, W.O. Parker, Jr. J. Poly. Sci. 2022, 2022, 1. https://doi.org/10.1002/pol.20220329
129)* “High Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers for Integrated Photonics,” Nishant, A.; Kim, K.; Showghi, S.; Himmelhuber, R.; Kleine, T.S.; Lee, T.; Pyun, J.; Norwood, R.A. Adv. Opt. Mater. 2022, 10, 2200176. https://doi.org/10.1002/adom.202200176
128)* “On the Fundamental Polymer Chemistry of Inverse Vulcanization for Statistical and Segmented Copolymers from Elemental Sulfur, Kang, K.; Iyer, K.; Pyun, J. Chem. Eur. J. 2022 , 28, e202200115.
127)* “Rapid Photolithographic Fabrication of High Density Optical Interconnects with Refractive Index Contrast Polymers,” Frish, J.I.; Kleine, T.S.; Himmelhuber, R.; Showghi, S.; Nishant, A.; Kim, K.-J.; Brusberg, L.; Koch, T.; Pyun, J.; Norwood, R.A. Optics Materials Express 2022, 12, 1932-1944, https://doi.org/10.1364/OME.454195;
https://www.sciencedaily.com/releases/2022/04/220413131210.htm;
https://phys.org/news/2022-04-polymer-materials-fabricating-optical-int…
126)* “High Verdet Constant Materials for Magneto-Optical Faraday Rotation: A review,” Carothers, K.J.; Norwood, R.A.; Pyun, J. Chem. Mater. 2022, 34, 2531–2544 https://doi.org/10.1021/acs.chemmater.2c00158
125)* “SmartPrint single-mode flexible polymer optical interconnect for high density integrated photonics,” Jiang, L.; Nishant, A.; Frish, J.; Kleine, T.S.; Brusberg, L.; Himmelhuber, R.; Kim, K.-J.; Pyun, J.; Pau, S.; Norwood, R.A.; Koch, T. J. Lightwave Technol. 2022, 40, 3839-3844 https://doi.org/10.1109/JLT.2022.31498
124)* “Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials,” Lee, T.; Dirlam, P.D. Njardarson, J.T.; Glass, R.S.; Pyun J. JACS 2022, 144, 5-22, https://doi.org/10.1021/jacs.1c09329.
123)* “Synthesis of Segmented Polyurethanes from Elemental Sulfur with Enhanced Thermomechanical Properties and Flame Retardancy, “ Kang, K.; Phan, A.; Olikagu, C.; Lee, T.; Loy, D.A.; Kwon, M.; Paik, H.-J.; Hong, S.-J.; Bang, J.; Parker, W.O.; Sciarra, M.; De Angelis, A.R.; Pyun, J. Angew. Chem. Int. Ed. 2021, 60, 22900-22907, DOI: 10.1002/anie.202109115
122)* “Polymer Coated Magnetic Nanoparticles as Ultra-High Verdet Constant Materials: Correlation of Nanoparticle Size with Magnetic & Magneto-Optical Properties,” Carothers, K.J.; Lyons, N. P.; Pavlopolous, N.G.; Kang, K.; Kochenderfer, T. M.; Phan, A.; Holmen, L.N.; Jenkins, S.L.; Shim. I.-B.; Norwood, R.G.; Pyun, J. Chem. Mater. 2021, 33, 5010-5020, https://doi.org/10.1021/acs.chemmater.1c00808
121)* “Elemental sulfur – molybdenum disulfide composites for high-performance cathodes for Li-S batteries: the impact of interfacial structures on electrocatalytic anchoring of polysulfides,” Oleshko, V.P.; Chang, E.; Snyder, C.R.; Soles, C.L.; Takeuchi, S.; Kleine, T.K.; Dirlam, P.T.; Pyun, J. MRS Communications 2021, in press
120)* “Increasing the Rate of Hydrogen Evolution Reaction in Neutral Water with Protic Buffer Electrolytes,” Clary, K.E.; Karaylan, M.; McCleary-Petersen, K.C.; Petersen, H.A.; Glass, R.S.; Pyun, J.; Licthenberger, D.L. Proceedings of the National Academy of Sciences 2020, 117, 32947-32953
119)* “Influence of Processing Environment on the Surface Composition and Electronic Structure of Size-Quantized CdSe Quantum Dots,” Shallcross, R.; Graham, A.; Karayilan, M.; Pavlopoulos, N.G.; Meise, J.; Pyun, J.; Armstrong, N.R. J. Phys. Chem. C 2020, 124, 21305–21318
118)* “One-step vapor-phase synthesis of transparent high-refractive index sulfur-containing polymers,” Kim, D.-H.; Jang, W.; Choi, K.; Choi, J.-S.; Pyun, J.; Lim, J.; Char, K.; Im, S.-G. Science Advances 2020, 6, eabb5320
117)* “Dynamic Covalent Polymerization of Chalcogenide Hybrid Inorganic/Organic Polymer Resins with Norbornenyl Comonomers,” Kwon, M.-H.; Lee, H.-C.; Lee, S.-H.; Jeon, H.-B.; Oh, M.-C.; Pyun, J.; Paik, H.-J. Macromol. Res. 2020, 28, 1003-1009
116)* “Electrogenerated chemiluminescence of near-infrared-emitting CdSe@CdSe nanorods in aqueous solution,” Zhuang, Y.; Zheng, Y.; Saavedra, S.S.; Pavlopoulos, N.P.; Pyun, J. J. Electrochem. Soc. 2020, in press
115)* “Refractive Index Contrast Polymers: Photoresponsive Systems with Spatial Modulation of Refractive Index for Photonics,” Kleine, T.K.; Frisch, J.I.; Pavlopolous, N.G.; Showghi, S.; Himmelhuber, R.; Norwood, R.A.; Pyun, J. ACS Macro Lett. 2020, 9, 416-421.
114)* “ Polymer and Magnetic Nanoparticle Composites with Tunable Magneto-Optical Activity: Role of Nanoparticle Dispersion for High Verdet Constant Materials,” Pavlopoulos, N. G.; Kang, K. S.; Holmen, L.N.; Lyons, N.P.; Akhoundi, F.; Carothers, K.J.; Jenkins, S.L.; Lee, T.; Kochenderfer, T.M.; Phan, A.; Phan, D.; Mackay, M.E.; Shim, I.; Char, K.; Peyghambarian, N.; LaComb L.; Norwood, R.A; Pyun, J. J. Mater. Chem. C. 2020, 8, 5417-5425
113)* “Professor Krzysztof Matyjaszewski-A Pioneer in Polymer Science,” Gao, H.; Tsarevsky, N.V.; Sumerlin, B.; Lutz, J.-F.; Pyun, J., J. Polym. Sci. 2020, 58, 13.
112)* “100th Anniversary of Macromolecular Science Viewpoint: High Refractive Index Polymers from Elemental Sulfur for Infrared Thermal Imaging and Optics,” Kleine, T.K.; Glass, R.S.; Lichtenberger, D.L.; Mackay, M.E; Char, K.; Norwood, R.; Pyun, J. ACS Macro Lett. 2020, 9, 245-259.
111)* “Synthesis of Metallopolymers via Atom Transfer Radical Polymerization from a [2Fe-2S] Metalloinitiator: Molecular Weight Effects on Electrocatalytic Hydrogen Production,” Karayilan, M.; McCleary-Petersen, K.C.. Hamilton, M.O.; Glass, R.S.; . Lichtenberger, D.L.; Pyun, J. Macromol. Rapid Commun. 2020, 41, 1900424
110)* “Chalcogenide Hybrid Inorganic/Organic Polymer (CHIP) Resins: Amine Functional Prepolymers from Elemental Sulfur,” Karayilan, M.; Kleine, T.S.; Carothers, K.; Frederick, K.M.; Loy, D.A.; Glass, R.S.; Char, K.; Pyun, J. J. Polym. Sci., Part A: Polym. Chem. 2020, 58, 35-41. DOI: 10.1002/pola.29480
109)* “Infrared Fingerprint Engineering: A Molecular Design Approach to Long Wave Infrared Transparency with Polymeric Materials,” Kleine, T.S.; Lee, T.; Carothers, K.J.; Hamilton, M.O.; Anderson, L.A.; Diaz, L.R.; Lyons, N.P.; Coasey, K.; Parker, W.O.; Mackay, M.E.; Char, K.; Glass, R.S.; Licthenberger, D.L.; Norwood, R.A.; Pyun, J.* Angew. Chem. Int. Ed.. 2019, 58, 17656-17660.
108)* Glass, R. S.; Pyun, J.; Lichtenberger, D. L.; Brezinski, W/ P.; Karayilan, M.; Clary, K. E.; Pavlopoulos, N. G.; Evans, D. H. Phosphorus, Sulfur and Silicon and the Related Elements 2019, 194, 710-706
107)* “Recent Advances in the Polymerization of Elemental Sulfur, Inverse Vulcanization and Functional Chalcogenide Hybrid Organic/Inorganic Polymers (CHIPs),” Zhang, Y.; Glass, R.S.; Char, K.; Pyun, J. Polym. Chem. 2019, 10, 4078-4105.
106)* “Rational Design of Sulfur-Containing Composites for High Performance Lithium Sulfur Batteries ,” Sun, J.; Ma, J.; Fan, J.; Pyun, J.; Geng, J. APL Materials 2019, 7(2), 020904/1-020904/8
105)* “Synthesis of Macroporous Conjugated Polymer Framework: Iron Doping for Highly Stable, Highly Efficient Lithium–Sulfur Batteries,” Jia, P.; Hu, T.; He, Q.; Cao, X.; Ma, J.; Fan, J.; Chen, Q.; Ding, Y.-H.; Pyun, J.; Geng, J. ACS Appl. Mater. Interfaces 2019, 11, 3087-3097
104)* “Catalytic Metallopolymers from [2Fe-2S] Clusters: Artificial Metalloenzymes for
Hydrogen Production,”Karayilan, M.; Brezinkski, W.; Clary, K.; Glass, R.S.; Licthenberger, D.; Pyun, J. Angew. Chem. Int. Ed. 2019, 58, 7537-7550
103)* “Macromolecular Engineering of the Outer Coordination Sphere of [2Fe2S] Metallopolymers to Enhance Catalytic Activity for H2 Production,” Brezinski, W.; Karayilan, M.; Clary, K.E.; Lichtenberger, D.; Glass, R.S.; Pyun, J. ACS Macro Lett. 2018, 7, 1383-1387 DOI:10.1021/acsmacrolett.8b00765.
102)* “Nucleophilic Activation of Elemental Sulfur for Inverse Vulcanization and Dynamic
Covalent Polymerizations,” Zhang, Y.; Pavlopoulos, N.G.; Kleine, T.K.; Karayilan, M.;
Char, K.; Glass, R.S.; Pyun, J. J. Polym. Sci., Part A: Polym. Chem. 2019, 1, 7-12. DOI: 10.1002/pola.29266
101)* “Sulfur polymers meet poly(ionic liquid)s: Bringing new properties to both polymer families,” Gomez, I.; Fdz De Anasto, A.; Leonet, O.; Blazquez, J.A.; Grande, H.-J.; Pyun, J.; Mecerreyes, D. Macromol. Rapid Commun. 2018, 39 (21), 1800529
100)* “Nonlinear optical properties of an chalcogenide hybrid inorganic/organic polymers (CHIPs) using Z-scan technique,” Babaeian, M.; Ruiz Diaz, L. Namnabat,S. Kleine, T.S.; Azarm, A.; Pyun, J.; Peyghambarian, N.; Norwood, N.A.; Optics Express 2018, 8, 2510-2519.
99)* “[FeFe]-Hydrogenase Mimetic Metallopolymers with Exceptional Catalytic Activity
for H2 Production,” Brezinski, W.; Karayilan, M.; Clary, K.E.; Lichtenberger, D.; Glass, R.S.; Pyun, J. Angew. Chem. Int. Ed.. 2018, 57, 11898-11902.
98)* “One Dimensional Photonic Crystals from Ultra-high Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers,” Kleine, T.S.; Konopka, K. M.; Anderson, L.E.; Ruiz Diaz, L.; Kim, E.-T.; Glass, R.S.; Norwood, R.; Char, K.; Pyun, J. ACS Macro Lett. 2018, 7, 875-880 DOI: 10.1021/acsmacrolett.8b00245
97)* “Functional Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs): Inverse Vulcanization of Elemental Sulfur with 4-Vinylaniline and Post-Polymerization Modifications,” Zhang, Y.; Carothers, K.; Glass, R.S.; Norwood, R.A.; Char, K.; Pyun, J. Poly. Chem. 2018, 9, 2290-2294.
96)* “Subsurface Imaging of the Cores of Polymer Encapsulated Cobalt Nanoparticles using
Force Modulation Microscopy,” Deese, S.; Englade-Franklin, L.; Hill, L.J.; Pyun, J.; Chan, J.; Garno, J. J. Phys. Chem. C. 2017, 121, 23498–23504
95)* “Type I vs Type II Electronic Modulation in CdSe@CdS Tetrapods: Ramifications for Selective Large Scale Noble Metal Tipping,” Pavlopolous, N.G.; Dubose, J.; Liu, Y; Huang, X.; Pinna, N.; Willinger, M.-G.; Lian, T.; Char, K.; Pyun, J. Crys. Eng. Comm. 2017, 19, 6443-6453, doi:10.1039/C7CE01558E
94)* “Multimodal Characterization of the Morphology and Functional Interfaces in Composite Electrodes for Li-S Batteries by Li Ion and Electron Beams,” Oleshko, V.; Herzing, A. ; Twedt, K. ; Griebel, J.J. ; McClelland, J.; Pyun, J.; Soles, C.L. Langmuir 2017, 33, 9361-9377, DOI: 10.1021/acs.langmuir.7b00978
93)* “The Importance of Confined Sulfur Nano-Domains and Adjoining Conductive Pathways in Sub-Reaction Regimes of Li-S Batteries,” Park, J.-J.; Kim, E.-T.; Kim, C.; Pyun, J.; Jang, H.S.; Shin, J.; Choi, J.-W.; Char, K.; Sung, Y. Advanced Energy Materials 2017, DOI: 10.1002/aenm.201700074
92)* “Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs) via Inverse Vulcanization and Dynamic Covalent Polymerizations,” Zhang, Y.; Glass, R.S.; Char, K.; Pyun, J. Polym. Chem. 2017, 8, 5157-5173, DOI: 10.1039/ c7py00587c.
91)* “Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs): Ultra-high Refractive Index Polymers for Infrared Imaging,” Anderson, L.E.; Kleine,T.S.; Zhang, Y.; Phan, D. D.; Namnabat, S.; LaVilla, E.A.; Konopka, K.M.; Ruiz Diaz, L.; Manchester, M.S.; Schwiegerling, J.; Glass, R.S.; Mackay, M.E.; Char, K.; Norwood, R.A.; Pyun, J. ACS Macro Lett. 2017, 6, 500-504, DOI: 10.1021/acsmacrolett.7b00225
90)* “Anisotropic polymer nanocomposite films by low magnetic field self-assembly of symmetric and asymmetric cobalt nanoparticle chains during film casting,” Yuan, H. ; Zvonkina , I. ; Al-Enizi, A. ; Elzatahry, A. ; Pyun, J. ; Karim, A. ACS Appl. Mater. Interfaces 2017, 9(12), 11290-11298
89)* “The Use of Polymers in Li-S Batteries: A Review,” Dirlam, P.D.; Glass, R.S.; Char, K.; Pyun, J. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1635-1668, DOI: 10.1002/pola.28551
88)* “From Waste to Valuable Plastics : Discovery of New Paradigms from Well-Studied Systems with Elemental Sulfur,” Glass, R.S.; Char, K.; Pyun, J. Phosphorous, Sulfur, Silicon and the Related Elements 2017, 192(2), 157-161
87)* “Analytical Multimode Scanning and Transmission Electron Imaging and Tomography of Multiscale Structural Architectures of Sulfur Copolymer-Based Composite Cathodes for Next Generation High-Energy Density Li-S Batteries,” Oleshko, K.; Herzing, K.; Griebel, J.J.; Chung, W.; Simmonds, A.; Pyun, J.; Soles, C. Microscopy and Microanalysis 2016, 22(6), 1198-1221.
86)* “High Refractive Index Sulfur Copolymers with Improved Thermomechanical Properties: Inverse Vulcanization of Sulfur with (1,3,5)-triisopropenylbenzene,” Kleine, T.S.; Nguyen, N.; Anderson, L.E.; Namnabhat, S.; LaVilla, E.A.; Showghi, S.A.; Dirlam, P.T.; Arrington, C.B.; Manchester, M.A.; Schwiegerling, J.; Glass, R.S.; Char, K.; Norwood, R.A.; Mackay, M.E.; Pyun, J. ACS Macro Lett. 2016, 5, 1152-1156.
85*) “Inverse Vulcanization of Elemental Sulfur and Styrene for Polymeric Cathodes in Li-S Batteries,” Zhang, Y.; Griebel, J.J.; Dirlam, P.D.; Glass, R.S.; Char, K.; Pyun, J. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 107-116
84)* “Colloidal Random Terpolymers: Controlling Reactivity Ratios of Colloidal Comonomers via Metal Tipping of Semiconductor Nanocrystals,” Pavlopolous, N.G.; Dubose, J.; Hartnett, E.; Char, K.; Pyun, J. ACS Macro Lett. 2016, 5, 950-954.
83)* “Arm Length Dependency of Pt-Decorated CdSe Tetrapods on the Performance of Photocatalytic Hydrogen Generation,” Sung, Y.-H.; Lim, J.; Pyun, J.; Char, K. Korean Journal of Chemical Engineering 2016, 33, 2870-2290
82)* “Elemental Sulfur and Molybdenum Disulfide Composites for Li-S Batteries with Long Cycle Life and High-Rate Capability,” Dirlam, P.T.; Park, J.-J.; Simmonds, A.G.; Domanik, K.; Arrington, C.B.; Schaefer, J.L.; Oleshko, V.P.; Kleine, T.S.; Char, K.; Glass, R.S.; Soles, C.L.; Kim, C.; Pinna, N.; Sung, Y.-E.; Pyun, J. ACS Applied Mater. Interfaces 2016, 8, 13437-13448.
81)* “Polymerizations with Elemental Sulfur: A Novel Route to High Sulfur Content Polymers for Sustainability, Energy and Defense,” Griebel, J.J.; Glass, R.S.; Char, K.; Pyun, J. Prog. Polym. Sci. 2016, 58, 90-125.
80)* “Conformal Polymeric Multilayer Coatings on Sulfur Cathodes via Layer-by-Layer Deposition for High Capacity Retention in Li-S Batteries,” Kim, E.-T.; Park, J.-J.; Kim, C.; Simmonds, A.G.; Sung, Y.; Pyun, J.; Char, K. ACS Macro Lett. 2016, 5(4), 471-475
79)* “Graphene Quantum Dots for High Sulphur/Sulphide Utilization in Lithium-Sulphur Batteries,” Park, J.; Moon, J.; Kang, J.-H.; Kim, K.-R.; Yim, E.-H.; Park, J.; Lee, K.-J.; Yu, S.-H.; Seo, J.-H.; Lee, J.; Heo, J.; Koh, S.; Cho, S.-P.; Kim, S.K.; Pyun, J.; Hong, B.-H.; Sung, Y.-E. Nature Asia Materials. 2016, 8, e272
78)* “Modular Synthesis of Functional Polymer Nanoparticles from a Versatile Platform Based on Poly(pentafluorophenylmethacrylate)," Lee, Y.; Lim, J.; Pyun, J.; Char, K. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1895-1901
77*) “Synthesis and Assembly of Dipolar Heterostructured Tetrapods: Colloidal Polymers with “Giant t-butyl groups,” Pavlopoulos, N.G.; Dubose, J.; Willinger, M.-G.; Pinna, N.; Char, K.; Pyun, J. Angew. Chem. Int. Ed. 2016, 55(5), 1787-1791.
76)* “One-Pot Synthesis of Sulfur-Rich Block Copolymer Nanoparticles via ROMP with Tunable Size and Refractive Index,” Lim, J.; Cho, Y.; Kang, E.-H.; Yang, S. Pyun, J.; Choi, T.-L.; Char, K. Chem. Commun. 2016, 52(12), 2485-2488
75)* “Uniform Decoration of Pt Nanoparticles on Well-Defined CdSe Tetrapods and the effect of their Pt Cluster Size on Photocatalyic H2 Generation,” Sung, Y.; Lim, J.; Koh, J.-H.; Hill, L.J.; Min, B.-K.; Pyun, J.; Char, K. Crys. Eng. Comm. 2015, 17, 8423-8427.
74)* “Characterization of Energetics and Dynamics of Charge Injection Processes in Au-Tipped CdSe Nanorod Monolayers Using Photoemission Spectroscopies and Waveguide Spectroelectrochemistry,” Ehamparam, R.; Pavlopoulos, N.; Liao, M.; Hill, L.J.; Armstrong, N.R.; Pyun, J.; Saavedra, S.S. ACS Nano 2015, 9, 8786-8800.
73)* “Preparation of Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur for Healable IR Optical Materials,” Griebel, J. J.; Ngoc, N.; Namnabat, S.; Anderson, L.E. Mackay, M.E.; Char, K. Glass, R.S.; Norwood, R.A; Pyun, J. ACS Macro Letters, 2015, 4, 862-866. (ACS Editor’s Choice)
72)* “Structural origins of enhanced capacity retention in copolymerized sulfur - based composite cathodes for high-energy density Li-S batteries,” Oleshko, V.P.; Kim, J.; Hudson, S.; Soles, C.L.; Simmonds, A.G.; Griebel, J.J.; Glass, R.S.; Char, K.; Pyun, J. MRS Communications 2015, 5, 353-364
71)* “Universal Length-Dependence of Exciton Localization Efficiency in Type I and Quasi Type II CdSe@CdS Nanorods,” Wu, K.; Hill, L.J.; Chen, J.; McBride, J.R.; Pavlopolous, N.; Richey, N.E.; Pyun, J.; Lian, T. ACS Nano 2015, 9, 4591-4599.
70)* “High Sulfur Content Polymer Nanoparticles Obtained from Interfacial
Polymerization,” Kim, J.; Jung, U.; Joe, W.-T.; Kim, E.-T.; Pyun, J.; Char, K. Macromolecular Rapid Commun. 2015, 36, 1103-1107.
69)* “Inverse Vulcanization of Elemental Sulfur with 1,4-Diphenylbutadiyne as Polymeric Cathode Materials in Li-S Batteries,” Dirlam, P.T.; Simmonds, A.G.; Kleine, T.S.; Nguyen, N.A. Anderson, L.E.; Klever, A.O.; Florian, A.; Costanzo, P.J.; Theato, P.; Mackay,M.E.; Glass, R.S.; Char, K.; Pyun, J. RSC Advances 2015, 5, 24718-24722
68)* “Improving the Charge Conductance of Elemental Sulfur via Tandem Inverse Vulcanization and Electropolymerization,” Dirlam, P.T.; Simmonds, A.G.; Shallcross, R.C.; Arrington K.A.; Chung W.C.; Griebel, J.J.; Hill, L.J; Glass, R.S.; Char, K.; Pyun, J. ACS Macro Lett. 2015, 4, 111-114.
67)* “Recent Synthetic and Processing Approaches for the Direct Use of Elemental Sulfur for Advanced Materials,” Lee, J.; Pyun, J.; Char, K. Angew. Chem. Int. Ed. 2015, 54, 3249-3258.
66)* “Colloidal Polymers from Inorganic Nanoparticle Monomers,” Hill, L; Pinna, N.; Char, K.H.; Pyun, J. Prog. Polym. Sci. 2015, 40, 85-120.
65) * “Kilogram Scale Inverse Vulcanization of Elemental Sulfur to Prepare High Capacity Polymer Electrodes for Li-S Batteries,” Griebel, J.J.; Li, G.; Glass, R.S.; Char, K.; Pyun, J. J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 173-177
64)* “Preparation of Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur,” Sulfur,” Griebel, J.J.; Ngyugen, N.; Astashkin, A.; Glass, R.S.; Mackay, M.E.; Char, K.; Pyun, J. for ACS Macro Lett. 2014, 3, 1258-1261.
63) * “Synthesis and Dipolar Assembly of Heterostructured Cobalt Tipped CdSe@CdS Nanorods,” Hill, L.J.; Richey, N.E.; Sung, Y.-H.; Dirlam, P.T.; Lavoie-Higgins, E.; Shim, I-.B.; Pinna, N.; Willinger, M.-G.; Vogel, W.; Char, K.; Pyun, J. Cryst. Eng. Comm. 2014, 16, 9461-9468.
62)* “One-Pot Synthesis of PbS NP / Sulfur-Oleylamine Copolymer Nanocomposites via the Copolymerization of Elemental Sulfur with Oleylamine,” Kim, E.T.; Chung, W.J.; Lim, J.; Johe, P.; Glass, R.G.; Pyun, J.; Char, K. Polym. Chem., 2014, 5, 3617-3623.
61) * “Colloidal Polymers via Dipolar Assembly of Heterostructured Co-tipped CdSe@CdS Nanorods,” Hill, L.J.; Richey, N.E.; Sung, Y.-H.; Dirlam, P.T.; Lavoie-Higgins, E.; Shim, I-.B.; Pinna, N.; Willinger, M.-G.; Vogel, W.; Char, K.; Pyun, J. ACS Nano 2014, 8, 3272-3284
60)* “Colloidal Polymers via Dipolar Assembly of Magnetic Nanoparticle Monomers,” Hill, L.J.; Pyun, J. ACS Applied Interfaces 2014, 6, 6022-6032.
59)* “New Infrared Transmitting Material via Inverse Vulcanization of Elemental Sulfur to Prepare High Refractive Index Polymers,” Griebel, J.J.; Namnabat, S.; Kim, E.-T,.; Himmbelhuber, R.; Moronta, D.H.; Chung, W.J.; Simmonds, A.G.; Ngyugen, N.; Mackay, M.E.; Char, K. Glass, R.S.; Norwood, R.A; Pyun, J. Adv. Mater. 2014, 26, 3014-3018.
58)* “Inverse Vulcanization of Elemental Sulfur for High Capacity Polymeric Cathode Materials in Li-S Batteries,” Simmonds, A.G.; Griebel, J.J.; Park, J.J.; Kim, K.; Kim, E-T.; Glass, R.S.; Sung, Y.-E.; Char, K.; Pyun, J. ACS MacroLett. 2014, 3, 229-232 (ACS Editors’ Choice; Featured in C&E News 2014)
57)* “Synthesis, Self-Assembly and Self-Healing of Supramolecular Perfluoropolyethers: Synthesis and Rheology,” Li, G.; Wie, J.-J.; Nyugen, N.; Chung, W.-J.; Kim, E.-T.; Char, K,; Mackay, M.; Pyun, J. Journal of Polymer Science, Part A: Polymer Chemistry. 2013, 51, 3598-3606.
56)* “Single Chain Polymer Nanoparticles via Sequential ATRP & Oxidative Polymerizations,” Dirlam, P.; Kim, H. –J.; Arrington, K.; Simmonds, A.; Chung, W.; Sahoo, R.; Costanzo, P.; Theato, P.; Char, K.; Pyun, J. Polym. Chem. 2013, 4, 3765-3773.
55)* “The Use of Elemental Sulfur as an Alternative Feedstock for Polymeric Materials,” Chung, W.-J.; Griebel, J.J.; Kim, E.-T.; Yoon, H. –S.; Simmonds, A.G.; Jon, H.-J.; Dirlam, P.T.; Wie, J.J.; Nguyen, N.A.; Guralnick, B.W.; Park, J.-J.; Somogyi, A.; Theato, P.; Mackay, M.E.; Glass, R.S.; Char, K.-C.; Pyun, J. Nature Chemistry 2013, 5, 518-524. (highlighted in Nature Materials 2013, 12, 472; ACS Macro Letters 2013, 2, 839; NPG Asia Materials 2013, 5, e64)
54)* “Synthesis of Polyoctadecyl methacrylate Polymer Brushes via Surface Initiated Atom Transfer Radical Polymerization,” Yoo, H.; Kim. B.-Y.; Pyun, J. Appl. Organometallic Chem. 2013, 27, 378-382.
53)* “Studies of Mixed Liposomes with Novel Sorbyl Functionalized Head Group Lipids,” Ratnayaka, S.N.; Elandaloussi, E.H.; Korth, B.D.; Bates, R.B.; Pyun, J.; Saavedra, S.S. Chem. Phys. Lipids 2012, 165, 809-817.
52)* “Self Assembly and Colloidal Polymerization of Polymer-Nanoparticle Hybrids into Mesoscopic Chains,” Pyun, J. Angew. Chem. Int. Ed. 2012, 51, 12408-12409
51)* “Still in Control,” Pyun, J. Nature Materials 2012, 11, 753-754.
50) * “Directing the deposition of ferromagnetic cobalt onto Pt-tipped CdSe@CdS nanorods: Synthetic and Mechanistic Insights ,” Hill, L.J.; Bull, M.M.; Sung, Y.; Simmonds, A.G.; Dirlam, P.T.; Richey, N.E.; DeRosa, S.E.; Guin, D.; Shim, I.-B.; Costanzo, P.J.; Pinna, N.; Willinger, M.-G.; Vogel, W.; Char, K.; Pyun, J. ACS Nano 2012, 6, 8632-8645.
49*) “Functionalization and Patterning of Reactive Polymer Brushes Based on Surface Reversible Addition and Fragmentation Chain Transfer Polymerization,” Choi, J.; Schattling, P.; Jochum, F.D.; Pyun, J.; Char, K.; Theato, P. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 4010-4018.
48*) “Controlling Length and Areal Density of Magnetically Actuated Artificial Cilia through the Dipolar Assembly of Ferromagnetic Nanoparticles,” Breidenich, J.L.; Wei, M.C.; Clatterbaugh, G.V.; Benkoski, J.J.; Keng, P.K.; Pyun, J. Soft Matter 2012, 8, 5334-5341
47) * “Surface Initiated Atom Transfer Radical Polymerization from Indium Tin Oxide Electrodes; Electrochemistry of Polymer Brushes,” Kim, B-Y.; Shallcross, R.C.; Armstrong, N.R.; Kim, H-J.; Chung, W.-J.; Sahoo. R.; Char, K.; Dirlam, P.T.; Costanzo, P.J.; Pyun, J. ACS Symposium Series: Progress in Controlled Radical Polymerization, 2012, 1101, 197-209.
46)* “Hybrids by Cluster Complex-Initiated Polymerization,” Zheng, Z.; Tu, X.; Nichol, G.;
Keng, P.Y.; Pyun, J. Macromolecules 2012, 45, 2614-2618.
45)* “Elemental Sulfur as a Reactive Medium for Au nanoparticles and
Nanocomposites,” Chung, W.J.; Simmonds, A.G.; Griebel, J.J.; Suh, H.-S.; Kim, E.-T.; Shim, I.-B.; Glass, R.S.; Loy, D.A.; Theato, P.; Sung, Y.-E.; Char, K.; Pyun, J. Angew. Chem. Int. Ed., 2011, 50, 11409-11412 (featured as cover article)
44)* “Morphological Conversion of Dipolar Core-Shell Au-Co Nanoparticles into Beaded Au-Co3O4 Nanowires ,” Kim, B.; Yu, S.-H.; Kim, H.-S.; Lee, D.-C.; Shim, I.-B.; Derosa, S.E.; Sung, Y.-E.; Pyun, J. J. Mater. Chem. 2011, 21, 14163
43)* “Dipolar Organization and Magnetic Actuation of Flagella-like Nanoparticle Assemblies ,” Benkoski, J.J.; Breidenich, J.L.; Uy, O. M.; Hayes, A.T.; Deacon, R.; Land, B.H.; Spicer, J.M.; Keng, P.; Pyun, J. J. Mater. Chem. 2011, 21, 7314-7325.
42)* “Colloidal Polymerization of Polymer Coated Ferromagnetic Nanoparticles into Pt-Co3O4 Nanowires ,” Keng, P.; Bull, M.M.; Shim, I.-B.; Armstrong, N.R.; Pyun, J. Chem. Mater. 2011, 23, 1120-1129.
41)* “Graphene Oxide as Catalyst: Application of Carbon Materials beyond Nanotechnology” Angew. Chem. Int. Ed. 2011, 51, 46-48
40)* “Magnetic Self-Assembly of Gold Nanoparticle Chains using Dipolar Core-Shell Colloids,” Kim, B.; Shim, I,-B.; Monti, O.A.; Pyun, J. Chem. Commun. 2011, 47, 890-892.
39)* “Mechanically Reinforced Silica Aerogel Nanocomposites via Surface Intiatied Atom Transfer Radical Polymerization,” Boday, D.J.; Keng, P.; Muriithi, B.; Pyun, J.; Loy, D.A. J. Mater. Chem. 2010, 20, 6863-6865
38)* Synthesis of Polymer Coated Ferromagnetic Nanoparticles in Multi-Gram Quantities with Tunable Variation of Particle Size,” Bull, M.M.; Chung, W.-J.; Rasmussen, S.G.; Kim, S.-J.; Shim, I.; Paik, H. –J.; Pyun, J. J. Mater. Chem. 2010, 20, 6023-6025.
37)* “Synthesis and Colloidal Polymerization of Dipolar Au-Co Core-Shell Nanoparticles into Au-Co3O4 Nanowires ,” Kim, B.; Shim, I.; Sahoo, R; Oskan, Z.; Saavedra, S.S.; Armstrong, N.R.; Pyun, J. J. Am. Chem. Soc. 2010, 132, 3234-3235
36)* "Photoelectrochemical Processes in Polymer Tethered CdSe Nanocrystals," Shallcross, R.C.; D’Ambruoso, G.D.; Pyun, J.; Armstrong, N.R. J. Am. Chem. Soc. 2010, 132, 2622-2632.
35)* “Dipolar Assembly of Ferromagnetic Nanoparticles into Magnetically Driven Artificial Cilia,” Benkoski, J.J.; Deacon, R.; Land, B.H.; Baird, L.M.; Breidenich, J.L.; Srinivasan, R.; Clatterbaugh, G.V.; Keng, P.; Pyun, J. Soft Matter 2010, 6, 602-609
34)* “Ferrocene Functional Polymer Brushes on Indium Tin Oxide via Surface Initiated Atom Transfer Radical Polymerization,” Kim, B.; Ratcliff, E.L.; Armstrong, N.R.; Kowalewski, T.; Pyun, J. Langmuir 2010, 26, 2083-2092.
33)* "Efficient CdSe Nanocrystal Diffraction Gratings Prepared by Microcontact Molding," Shallcross, C.R.; Chawla, G.S.; Marrikar, S.; Tolbert, S.; Pyun, J.; Armstrong, N.R. ACS Nano 2009, 3, 3629-363
32)* “Colloidal Polymerization of Polymer Coated Ferromagnetic Nanoparticles into Cobalt Oxide Nanowires,” Keng, P.; Kim, B.; Shim, I.-B.; Sahoo, R.; Veneman, P.E.; Armstrong, N.R.; Yoo, H.; Permberton, J.E.; Bull, M.M.; Griebel, J.J.; Ratcliff, E.L.; Nebesny, K. G.; Pyun, J. ACS Nano 2009, 3 (10), 3143-3157. (highlighted in ACS Nano Perpsective Article: Emrick et al., ACS Nano 2009, 3, 2870)
31)* “Oxidation effect in cobalt nanoparticle magnetic fluids,” Hong, J.- S.; Pyun, J.; Park,
Y.-W.; Kim, C. –S.; Shim, I.-B. IEEE Transactions on Magnetics 2009, 45, 2464-2466.
30)* “Lanthanide(III) Doped Magnetite Nanoparticles,” De Silva, C.R.; Smith, S.; Shim, I.;
Pyun, J.; Zheng, Z. J. Am. Chem. Soc. 2009, 131, 6336-6337.
29)* “pH-Degradable Stabilized Vesicles for Biological Sensing and Delivery,” Roberts, D.L.; Bowles, S.E.; Janczak, C.M.; Pyun, J.; Aspinwall, C.A. Langmuir 2009, 25, 1908-1910
28)* “Synthesis, Assembly and Functionalization of Polymer Coated Ferromagnetic Nanoparticles,” Korth, B.D.; Keng, P.; Shim. I.; Tang, C.; Kowalewski, T.; Pyun, J. ACS Symposium Series, “Nanoparticles: Synthesis, Stabilization, Passivation and Functionalization” 2008, 996, 272-285.
27)* “Self-Assembly of Polymer Coated Ferromagnetic Nanoparticles into Mesoscopic Polymer Chains and Visualization using Fossilized Liquid Assembly,” Benkoski, J.J, Bowles, S.E.; Jones, R.A.; Douglas, J.F.; Pyun, J.; Karim, A. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 2267-2277. (Highlighted in Materials Views 2008, A1-A8.)
26)* “Fabrication of Long CdS Nanowires by Using a Chemical Solution Process,” Shim, I.; Choi, D.-H.; Kim, C.-S.; Pyun, J.; Bowles, S.E. J. Korean Phys. Soc. 2008, 52, 332-336
25)* “Synthesis and Self-Assembly of Polymer Coated Ferromagnetic Nanoparticles,”
Keng, P.; Shim, I.; Korth, B.D.; Douglas, J.F.; Pyun, J. ACS Nano 2007, 4, 279-292.
24)* “Polythiophene-Semiconductor Nanoparticle Composite Thin Films Tethered to Indium
Tin Oxbide Substrates via Electropolymerization,” Shallcross, R.C.; D’Ambruoso, G.D.; Hall, Korth, B.D.; H.K.; Zheng, Z.; Pyun, J.; Armstrong, N. R. J. Am. Chem. Soc. 2007, 129, 11310-11311.
23)* “Magnetic Assembly and Pyrolysis of Functional Ferromagnetic Nanoparticles into 1-D Carbon Nanostructures,” Bowles, S.E.; Wu, W.; Kowalewski, T.; Schalnat, M.; Davis, R.; Pemberton, J.E.; Shim. I.; Korth, B.D.; Pyun, J. J. Am. Chem. Soc. 2007, 129, 8694-8695
22)* “Nanocomposite Materials from Functional Polymers and Magnetic Nanoparticles,” Pyun, J. Polym. Rev. 2007, 47, 231-263
21)* “Field induced formation of mesoscopic polymer chains from functional ferromagnetic nanoparticles,” Benkoski, J.J, Bowles, S.E.; Korth, Bryan, D.; Jones, R.A.; Douglas, J.F.; Karim, A.; Pyun, J. J. Am. Chem. Soc.. 2007, 129, 6291-6297
20)* “Polymer Encapsulated Metallic and Semiconductor Nanoparticles: Multifunctional
Materials with Novel Optical, Electronic and Magnetic Properties,” Pyun, J.; Emrick, T.S. Macromolecular Engineering: From Precise Macromolecular Synthesis to Macroscopic Materials, Properties and Applications, Ed. K. Matyjazsewski, L. Leibler, Y. Gnanou, Wiley-VCH, New York, 2007, vol. 4, 2409-2449
19)* “Polymer Coated Ferromagnetic Colloids from Well-Defined Polymeric Surfactants and Assembly into Nanoparticle Chains,” Korth, B.D.; Keng, P.; Shim, I.; Bowles, S.; Nebesny, K.; Tang, C.; Kowalewski, T.; Pyun, J. J. Am. Chem. Soc. 2006, 128, 6562
Postdoctoral/Graduate Publications
18) “The Dramatic Effect of Architecture on the Self-Assembly of Block Copolymers at Interfaces.” Kim, Yoojin; Pyun, Jeffrey; Frechet, Jean M. J.; Hawker, Craig J.; Frank, Curtis W. Langmuir 2005, 21(23), 10444-10458.
17) “Synthesis and Direct Visualization of Block Copolymers Composed of Different Macromolecules Architectures,” Pyun, J.; Tang, C.T.; Kowalewski, T.; Fréchet, J.M.J.; Hawker, C.J. Macromolecules 2005, 38, (7), 2674-2685
16) “A Structurally Diverse and Highly Efficient Approach to Dendritic Libraries using Click Chemistry,” Nugent, A.; Hawker, C.J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J.M.J.; Feldman, A.K.; Yu, P.; Finn, M.G.; Fokin, V.; Sharpless, K.B. Angew. Chem. Int. Ed. 2004, 43, 3928-3932.
15) “Synthesis and Surface Attachment of ABC Triblock Copolymers Containing Glassy and Rubbery Segments,” Pyun, J.; Jia, S.; Kowalewski, T.; Matyjaszewski, K. Macromol. Chem. Phys. 2004, 205, 411-417
14) “Macromolecules with Controlled Architecture,” Pyun, J.; Zhou, X.; Drockenmuller, E.; Hawker, C.J. J. Mater. Chem. 2003, 13, 2653-2660
13) “Synthesis of Polymer Brushes using Atom Transfer Radical Polymerization,” Pyun, J.; Kowalewski, T.; Matyjaszewski, K. Macromol. Rapid Comm. 2003, 24, 1043-1059
12) “Synthesis of Block, Statistical and Gradient Copolymers Containing Octadecyl Side Chains by Atom Transfer Radical Polymerization,” Qin, S.; Pyun, J.; Saget, J.; Jia, S.; Kowalewski, T.; Matyjaszewski, K. Macromolecules 2003, 36, 8969-8977
11) “Evaluating the Effect of Termination by Chain-Chain Coupling in Living Free Radical Polymerizations,” Pyun, J.; Rees, I.; Hawker, C.J.; Fréchet, J.M.J. Aust. J. Chem. 2003, 56, 775-782
10) “Synthesis of Organic/Inorganic Hybrid Nanoparticles: Kinetics of Surface-Initiated Atom Transfer Radical Polymerization and Morphology of Ultrathin Films,” Pyun, J.; Jia, S.; Kowalewski, T.; Matyjaszewski, K. Macromolecules 2003, 36, 5094-5104
9) “ABA Triblock Copolymers Containing Polyhedral Oligomeric Silsesquioxanes Pendant Groups: Synthesis and Unique Properties,” Pyun, J.; Matyjaszewski, K.; Wu, J.; Kim, G.M.; Chun, S.B.; Mather, P.T. Polymer 2003, 44, 2739-2750
8) “Synthesis and Characterization of Silica-graft-Polystyrene Hybrid Nanoparticles: Effect of Constraint on the Glass Transition of Spherical Polymer Brushes,” Savin, D.A.; Pyun, J.; Patterson, G.D.; Kowalewski, T.; Matyjaszewski, K. J. Polym. Sci. Part B, Polym. Phys. 2002, 40, 2667-2676
7) “Synthesis of Polypropylene-Poly(methacrylate) Block Copolymers using Metallocene Catalyzed Processes and Subsequent Atom Transfer Radical Polymerization,” Matyjaszewski, K.; Saget, J.; Pyun, J.; Schlogl, M.; Rieger, B. J. Macromol. Sci., Pure and Appl. Chem. 2002, A39, 901-913
6) "Synthesis of Well-Defined Block Copolymers Tethered to Polysilsesquioxane Nanoparticles and Their Nanoscale Morphology on Surfaces," Pyun, J. ; Matyjaszewski, K.; Kowalewski, T.; Savin, D.; Patterson, G.; Kickelbick, G.; Huesing, N. J. Am. Chem. Soc. 2001, 123, 9445
5) "Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/"Living" Radical Polymerization," Pyun, J.; Matyjaszewski, K. Chem. Mater. 2001, 13, 3436
4) "Synthesis of Hybrid Polymers Using Atom Transfer Radical Polymerization: Homopolymers and Block Copolymers from Polyhedral Oligomeric Silsesquioxane Monomers," Pyun, J.; Matyjaszewski, K. Macromolecules 2000, 33, 217-220
3) "Functionalization of Polymers Prepared By ATRP Using Radical Addition Reactions," Coessens, V.; Pyun, J.; Miller, P.J.; Gaynor, S.G.; Matyjaszewski, K. Macromol. Rapid Commun. 2000, 21,103-109
2) "Synthesis and Characterization of Star Polymers with Varying Arm Number, Length, and Composition from Organic and Hybrid Inorganic/Organic Multifunctional Initiators," Matyjaszewski, K.; Miller, P.J.; Pyun, J.; Kickelbick, G.; Diamanti, S. Macromolecules 1999, 32, 6526-6535
1) "Preparation of Hyperbranched Polyacrylates By Atom Transfer Radical Polymerization. Part 4. The Use of Zero-Valent Copper," Matyjaszewski, K.; Pyun, J.; Gaynor, S.G. Macromol. Rapid Commun 1998, 19, 665-670