Jeffrey Pyun

Professor

Degrees and Appointments 

  • B.A. 1997, Northwestern University
  • Ph.D. 2002, Carnegie Mellon University
  • Postdoctoral Fellow 2002-2004, IBM Almaden Research Center / UC Berkeley
  • Professor, UArizona, Chemistry & Biochemistry since 2004
  • Professor (joint) UArizona, College of Optical Sciences since 2022

Field of Study: Organic Chemistry

Awards and Honors

  • Fellow of the Royal Society of Chemistry, 2021
  • U.S. National Academy of Inventors, Senior Member, 2019
  • Fellow of the American Chemical Society, Division of Polymeric Materials: Science & Engineering, 2019
  • Arizona Academic Innovator of the Year Award (from Arizona Governor's Office), 2017
  • Best Paper Award for 2016, Microscopy Society of America, 2017
  • Tech Launch Arizona Innovation and Impact Award in Chemistry, University of Arizona, 2016
  • Catalyst Award for Applied Chemical Sciences, University of Arizona, 2016, 2017
  • Frontiers in Science Lecture, Kavli Institute-U.S. National Academy of Sciences, 2015
  • Kavli Fellow, U.S. National Academy of Science, 2011
  • INSIC Technical Achievement Award for Magnetic Tape, 2009
  • Alfred P. Sloan Research Fellowship, 2009
  • IBM Faculty Award, 2007
  • Office of Naval Research Young Investigator Award, 2007
  • NSF CAREER Award, 2007

Research Specialties: Energy Science, Materials and Polymer Chemistry, Surface and Solid State, Synthesis/Synthetic Methods Development

Research

Elemental Sulfur:  A novel, abundant feedstock for polymers and nanocomposite materials

We have pioneered the utilization of elemental sulfur for novel polymers and nanocomposites.  Sulfur is commonly used as a vulcanizing agent in the crosslinking of rubber for tires, however the use of elemental sulfur as the primary monomer, or comonomer for polymeric materials has not been widely explored.  Elemental sulfur is currently produced on the level of 70 million tons annually, the majority of which is thru hydrodesulfurization of crude petroleum.  Consequently, over 6 million tons of elemental sulfur is generated in excess, which creates exciting opportunities to develop new chemistry and processing to utilize sulfur as a feedstock for polymers.   We have invented a new polymerization process, termed, inverse vulcanization, to directly convert elemental sulfur into high sulfur content polymers  (Nature Chemistry 2013), which has since launched this technology as a new field in polymer science. Sulfur exhibits a number of useful properties, such as, high charge capacity for Li-insertion electrochemistry and high refractive index.  However, the chemical modification of sulfur into useful materials remains a difficult technical challenge. Toward this end, we are developing new polymerization and processing methods for the direct utilization of sulfur to prepare thermosetting polymeric sulfur and nanocomposite materials.

Key publications:

Pyun, J. Adv. Mater. 2014, 26, 3014; ACS Macro Letters, 2015, 4, 862; ACS Macro Lett. 2016, 5, 1152; ACS Macro Lett. 2017, 6, 500; ACS Macro Lett. 2018, 7, 875; Angew. Chem. Int. Ed.. 2019, 58, 17656; ACS Macro Lett. 2020, 9, 245; Science Advances 2020, 6, eabb5320; Adv. Opt. Mater. 2022, in press, DOI:10.1002/adom.202200176

High refractive index polymers for infrared optics and photonics

We have pioneered the development of ultra-high refractive polymers derived from the inverse vulcanization of elemental sulfur as the first class of optical polymers for infrared imaging and IR photonics.  These polymers are termed, Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs) as a hybrid from elemental chalcogenides, such as, sulfur, selenium with organic comonomers.

We have a diverse and highly collaborative research term at the interface of synthetic organic chemistry, polymer chemistry, computational chemistry and optical sciences to prepare novel optical polymers and fabrication of these materials into plastic optics and photonic devices.

Artificial Enzymes for Catalytic Water-Splitting for Clean Hydrogen Production

Metal-containing polymers can combine the useful properties of polymers with the key functions of metal complexes. These metallopolymers are applicable to a wide range of areas such as photovoltaics, stimuli responsive materials and catalysis. Catalysis, for example, includes designing artificial metalloenzymes which can mimic the biological functionalities by engineering the environment of a metal complex using polymeric materials. FeFe-hydrogenase enzyme found in bacteria is an efficient H2 generation catalyst and there has been extensive research on making FeFe-H2ase mimics to produce H2 as a carbon-free energy carrier. We, for the first time, made a metalloinitiator from a FeFe-H2ase mimic to grow polymers via ATRP. The polymers not only provide water solubility and oxygen stability in neutral water but also enhance the activity of the complex by tuning the secondary coordination sphere of the mimic. We will discuss our most recent efforts to synthesize a difunctional metalloinitiator and metallopolymers grafted via ATRP.

Key Publications:

Pyun et al., Proceedings of the National Academy of Sciences 2020, 117,  32947; Macromol. Rapid Commun. 2020, 41, 1900424; Angew. Chem. Int. Ed. 2019, 58, 7537; ACS Macro Lett. 2018, 7, 1383; Angew. Chem. Int. Ed.. 2018, 57, 11898

Refractive Index Contrast Polymers:  Photoresists for polymer waveguides, interconnects & photonic devices

We have developed a new class of optical polymers, termed, Refractive Index Contrast (RIC) Polymers, which are a class of photoresists that can be used as a “dry-write” film for waveguide and optical interconnect fabrication.  These new optical polymers are designed to enable rapid device component integration of photonic devices for next generation semiconductor chip fabrication.

Key publications:

Pyun et al., ACS Macro Lett. 2020, 9, 416; J. Lightwave Technol. 2022, 40, 3839; Optics Materials Express 2022, 12, 1932

Artificial Enzymes for Catalytic Water-Splitting for Clean Hydrogen Production

Metal-containing polymers can combine the useful properties of polymers with the key functions of metal complexes. These metallopolymers are applicable to a wide range of areas such as photovoltaics, stimuli responsive materials and catalysis. Catalysis, for example, includes designing artificial metalloenzymes which can mimic the biological functionalities by engineering the environment of a metal complex using polymeric materials. FeFe-hydrogenase enzyme found in bacteria is an efficient H2 generation catalyst and there has been extensive research on making FeFe-H2ase mimics to produce H2 as a carbon-free energy carrier. We, for the first time, made a metalloinitiator from a FeFe-H2ase mimic to grow polymers via ATRP. The polymers not only provide water solubility and oxygen stability in neutral water but also enhance the activity of the complex by tuning the secondary coordination sphere of the mimic. We will discuss our most recent efforts to synthesize a difunctional metalloinitiator and metallopolymers grafted via ATRP.

Key Publications:

Pyun et al., Proceedings of the National Academy of Sciences 2020, 117,  32947; Macromol. Rapid Commun. 2020, 41, 1900424; Angew. Chem. Int. Ed. 2019, 58, 7537; ACS Macro Lett. 2018, 7, 1383; Angew. Chem. Int. Ed.. 2018, 57, 11898

Refractive Index Contrast Polymers:  Photoresists for polymer waveguides, interconnects & photonic devices

We have developed a new class of optical polymers, termed, Refractive Index Contrast (RIC) Polymers, which are a class of photoresists that can be used as a “dry-write” film for waveguide and optical interconnect fabrication.  These new optical polymers are designed to enable rapid device component integration of photonic devices for next generation semiconductor chip fabrication.

Key publications:

Pyun et al., ACS Macro Lett. 2020, 9, 416; J. Lightwave Technol. 2022, 40, 3839; Optics Materials Express 2022, 12, 1932

“Utilization of Elemental Sulfur as an Alternative Feedstock for Polymeric Materials: Synthesis, Processing & Electrochemistry,” Chung, W.J.; Griebel, J.J.; Kim, E.T.; Yoon, H.S.; Simmonds, A.G.; Jon, H.J.; Wie, J.J.; Nguyen, N.A.; Guralnick, B.W.; Mackay, M.E.; Theato, P.; Glass, R.S.; Char, K.-C.; Pyun, J. Nature Chemistry 2012submitted.

“Synthesis of Polyoctadecyl methacrylate Polymer Brushes via Surface Initiated Atom Transfer Radical Polymerization,” Yoo, H.; Kim. B.Y.; Pyun, J. Appl. Organometallic Chem. 2012submitted.

“Directing the deposition of ferromagnetic cobalt onto Pt-tipped CdSe@CdS nanorods: Synthetic and Mechanistic Insights,” Hill, L.J.; Bull, M.M.; Sung, Y.; Simmonds, A.G.; Dirlam, P.T.; Richey, N.E.; DeRosa, S.E.; Guin, D.; Shim, I.-B.; Costanzo, P.J.; Pinna, N.; Willinger, M.-G.; Vogel, W.; Char, K.; Pyun, J. ACS Nano 20126(10), 8632-8645.

“Functionalization and Patterning of Reactive Polymer Brushes Based on Surface Reversible Addition and Fragmentation Chain Transfer Polymerization,” Choi, J.; Schattling, P.; Jochum, F.D.; Pyun, J.; Char, K.; Theato, P. J. Polym. Sci., Part A: Polym. Chem. 201250(19), 4010-4018.

“Self Assembly and Colloidal Polymerization of Polymer-Nanoparticle Hybrids into Mesoscopic Chains,” Pyun, J. Angew. Chem. Int. Ed. 2012in press.

“Still in Control,” Pyun, J. Nature Materials 2012in press.

“Functionalization and Patterning of Reactive Polymer Brushes Based on Surface Reversible Addition and Fragmentation Chain Transfer Polymerization,” Choi, J.; Schattling, P.; Jochum, F.D.; Pyun, J.; Char, K.; Theato, P. J. Polym. Sci., Part A: Polym. Chem. 2012, in press.

“Controlling Length and Areal Density of Magnetically Actuated Artificial Cilia through the Dipolar Assembly of Ferromagnetic Nanoparticles,” Breidenich, J.L.; Wei, M.C.; Clatterbaugh, G.V.; Benkoski, J.J.; Keng, P.K.; Pyun, J. Soft Matter 20128, 5334-5341.

"Surface Initiated Atom Transfer Radical Polymerization from Indium Tin Oxide Electrodes; Electrochemistry of Polymer Brushes," Kim, B-Y.; Shallcross, R.C.; Armstrong, N.R.; Kim, H-J.; Chung, W.-J.; Sahoo. R.; Char, K.; Dirlam, P.T.; Costanzo, P.J.; Pyun, J. ACS Symposium Series: Progress in Controlled Radical Polymerization 2012in press.

"Hybrids by Cluster Complex-Initiated Polymerization," Zheng, Z.; Tu, X.; Nichol, G.; Keng, P.Y.; Pyun, J. Macromolecules 2012in press.

"Elemental Sulfur as a Reactive Medium for Au nanoparticles and Nanocomposites," Chung, W.J.; Simmonds, A.G.; Griebel, J.J.; Suh, H.-S.; Kim, E.-T.; Shim, I.-B.; Glass, R.S.; Loy, D.A.; Theato, P.; Sung, Y.-E.; Char, K.; Pyun, J. Angew. Chem. Int. Ed.201150, 11409 - 11412 (featured as cover article).

"Morphological Conversion of Dipolar Core-Shell Au-Co Nanoparticles into Beaded Au-Co3O4 Nanowires," Kim, B.; Shim, I.-B.; Armstrong, N.R.; Sung, Y.-E.; Pyun, J. J. Mater. Chem. 201121 (37), 14163 - 14166.

"Dipolar Organization and Magnetic Actuation of Flagella-like Nanoparticle Assemblies," Benkoski, J.J.; Breidenich, J.L.; Uy, O. M.; Hayes, A.T.; Deacon, R.; Land, B.H.; Spicer, J.M.; Keng, P.; Pyun, J. J. Mater. Chem. 201121, 7314 - 7325.

"Colloidal Polymerization of Polymer Coated Ferromagnetic Nanoparticles into Pt-Co3O4 Nanowires," Keng, P.; Bull, M.M.; Shim, I.-B.; Armstrong, N.R.; Pyun, J. Chem. Mater. 201123, 1120 - 1129.

"Graphene Oxide as Catalyst: Application of Carbon Materials beyond Nanotechnology," Angew. Chem. Int. Ed. 201151, 46 - 48.

"Magnetic Self-Assembly of Gold Nanoparticle Chains using Dipolar Core-Shell Colloids," Kim, B.; Shim, I,-B.; Monti, O.A.; Pyun, J. Chem. Commun. 201147, 890 - 892.

"Mechanically Reinforced Silica Aerogel Nanocomposites via Surface Intiatied Atom Transfer Radical Polymerization," Boday, D.J.; Keng, P.; Muriithi, B.; Pyun, J.; Loy, D.A. J. Mater. Chem. 201020, 6863 - 6865.

"Synthesis of Polymer Coated Ferromagnetic Nanoparticles in Multi-Gram Quantities with Tunable Variation of Particle Size," Bull, M.M.; Chung, W.-J.; Rasmussen, S.G.; Kim, S.-J.; Shim, I.; Paik, H. J.; Pyun, J. J. Mater. Chem. 201020, 6023 - 6025.

"Synthesis and Colloidal Polymerization of Dipolar Au-Co Core-Shell Nanoparticles into Au-Co3O4 Nanowires," Kim, B.; Shim, I.; Sahoo, R; Oskan, Z.; Saavedra, S.S.; Armstrong, N.R.; Pyun, J. J. Am. Chem. Soc. 2010132, 3234 - 3235.

"Photoelectrochemical Processes in Polymer Tethered CdSe Nanocrystals," Shallcross, R.C.; D'Ambruoso, G.D.; Pyun, J.; Armstrong, N.R. J. Am. Chem. Soc. 2010132, 3234 - 3235.

"Dipolar Assembly of Ferromagnetic Nanoparticles into Magnetically Driven Artificial Cilia," Benkoski, J.J.; Deacon, R.; Land, B.H.; Baird, L.M.; Breidenich, J.L.; Srinivasan, R.; Clatterbaugh, G.V.; Keng, P.; Pyun, J. Soft Matter 20106, 602 - 609.

"Ferrocene Functional Polymer Brushes on Indium Tin Oxide via Surface Initiated Atom Transfer Radical Polymerization," Kim, B.; Ratcliff, E.L.; Armstrong, N.R.; Kowalewski, T.; Pyun, J. Langmuir 201026, 2083 - 2092.

"Efficient CdSe Nanocrystal Diffraction Gratings Prepared by Microcontact Molding," Shallcross, C.R.; Chawla, G.S.; Marrikar, S.; Tolbert, S.; Pyun, J.; Armstrong, N.R. ACS Nano 20093, 3629 - 3363.

"Colloidal Polymerization of Polymer Coated Ferromagnetic Nanoparticles into Cobalt Oxide Nanowires," Keng, P.; Kim, B.; Shim, I.-B.; Sahoo, R.; Veneman, P.E.; Armstrong, N.R.; Yoo, H.; Permberton, J.E.; Bull, M.M.; Griebel, J.J.; Ratcliff, E.L.; Nebesny, K. G.; Pyun, J. ACS Nano 200910, 3143 - 3157.

"Oxidation effect in cobalt nanoparticle magnetic fluids," Hong, J.- S.; Pyun, J.; Park, Y.-W.; Kim, C. S.; Shim, I.-B. IEEE Transactions on Magnetics 200945, 2464 - 2466.

"Lanthanide(III) Doped Magnetite Nanoparticles," De Silva, C.R.; Smith, S.; Shim, I.; Pyun, J.; Zheng, Z. J. Am. Chem. Soc. 2009131, 6336 - 6337.

"pH-Degradable Stabilized Vesicles for Biological Sensing and Delivery," Roberts, D.L.; Bowles, S.E.; Janczak, C.M.; Pyun, J.; Aspinwall, C.A. Langmuir 200925, 1908 - 1910.

"Synthesis, Assembly and Functionalization of Polymer Coated Ferromagnetic Nanoparticles," Korth, B.D.; Keng, P.; Shim. I.; Tang, C.; Kowalewski, T.; Pyun, J. ACS Symposium Series, Nanoparticles: Synthesis, Stabilization, Passivation and Functionalization 2008996, 272 - 285.

"Self-Assembly of Polymer Coated Ferromagnetic Nanoparticles into Mesoscopic Polymer Chains and Visualization using Fossilized Liquid Assembly," Benkoski, J.J, Bowles, S.E.; Jones, R.A.; Douglas, J.F.; Pyun, J.; Karim, A. J. Polym. Sci., Part B: Polym. Phys. 200846, 2267-2277. (Highlighted in Materials Views 2008A1 - A8.)

"Fabrication of Long CdS Nanowires by Using a Chemical Solution Process," Shim, I.; Choi, D.-H.; Kim, C.-S.; Pyun, J.; Bowles, S.E. J. Korean Phys. Soc. 200852, 332 - 336.

"Synthesis and Self-Assembly of Polymer Coated Ferromagnetic Nanoparticles," Keng, P.; Shim, I.; Korth, B.D.; Douglas, J.F.; Pyun, J. ACS Nano 20074, 279 - 292.

"Polythiophene-Semiconductor Nanoparticle Composite Thin Films Tethered to Indium Tin Oxide Substrates via Electropolymerization," Shallcross, R.C.; D'Ambruoso, G.D.; Hall, H; Korth, B.D.; H.K.; Zheng, Z.; Pyun, J.; Armstrong, N. R. J. Am. Chem. Soc. 2007129, 11310-11311.

"Magnetic Assembly and Pyrolysis of Functional Ferromagnetic Nanoparticles into 1-D Carbon Nanostructures," Bowles, S.E.; Wu, W.; Kowalewski, T.; Schalnat, M.; Davis, R.; Pemberton, J.E.; Shim. I.; Korth, B.D.; Pyun, J. J. Am. Chem. Soc. 2007, 129, 8694 - 8695.

"Nanocomposite Materials from Functional Polymers and Magnetic Nanoparticles," Pyun, J. Polym. Rev. 200747, 231 - 263.

"Field induced formation of mesoscopic polymer chains from functional ferromagnetic nanoparticles," Benkoski, J.J, Bowles, S.E.; Korth, Bryan, D.; Jones, R.A.; Douglas, J.F.; Karim, A.; Pyun, J. J. Am. Chem. Soc. 2007129, 6291 - 6297.

"Polymer Encapsulated Metallic and Semiconductor Nanoparticles: Multifunctional Materials with Novel Optical, Electronic and Magnetic Properties," Pyun, J.; Emrick, T.S. Macromolecular Engineering: From Precise Macromolecular Synthesis to Macroscopic Materials, Properties and Applications, Ed. K. Matyjazsewski, L. Leibler, Y. Gnanou, Wiley-VCH, New York, 2007vol. 4, 2409 - 2449.

"Polymer Coated Ferromagnetic Colloids from Well-Defined Polymeric Surfactants and Assembly into Nanoparticle Chains," Korth, B.D.; Keng, P.; Shim, I.; Bowles, S.; Nebesny, K.; Tang, C.; Kowalewski, T.; Pyun, J. J. Am. Chem. Soc. 2006128, 6562.