Faculty Directory

Home » Faculty » Jean-Luc Bredas

Jean-Luc Bredas

Regents Professor

Degrees and Appointments

  • Ph.D, University of Namur, Belgium, 1979
  • B.Sc., University of Namur, Belgium 1976

Awards and Honors

  • Centenary Prize of the Royal Society of Chemistry, UK (2021).
  • Materials Theory Award of the Materials Research Society (2020).
  • Alexander von Humboldt Research Award (2019).
  • Award of the American Chemical Society in the Chemistry of Materials (2016).
  • Elected Member of the European Academy of Sciences (2014).
  • David Adler Award of the American Physical Society in Materials Physics (2013).
  • Elected Member of the International Academy of Quantum Molecular Science (2011).
  • Named to the 2011 International Chair in Chemistry, International Solvay Institutes, Belgium.
  • American Chemical Society Charles H. Stone Award (2010).
  • Elected in the Inaugural Class of Fellows of the American Chemical Society (2009) and in the Inaugural Class of Fellows of the Materials Research Society (2008).
  • Editor for Chemistry of Materials, published by the American Chemical Society (2008–present).
  • Elected Fellow of: Royal Society of Chemistry, UK (2008); Optical Society of America (2003); American Association for the Advancement of Science (1998); American Physical Society (1993).
  • Descartes Prize of the European Commission (2003).
  • Honorary Professor, Institute of Chemistry of the Chinese Academy of Sciences in Beijing (named 2003).
  • Doctor Honoris Causa of Univ. Libre de Bruxelles (2002).
  • Italgas Prize for Research and Technological Innovation in Applied Molecular Sciences (2001).
  • Quinquennial Prize for Exact Sciences of the Belgian National Science Foundation, FNRS (2000).
  • Doctor Honoris Causa of Linköping Univ. (2000).
  • Francqui Prize (1997).

Harnessing Solar Energy with Organic and Hybrid Photovoltaic Cells

Organic and hybrid solar cells are currently attracting significant interest due to a number of advantageous characteristics such as material diversity, mechanical flexibility, low-temperature processing, and large-area capability. To increase the photovoltaic response of organic solar cells, our efforts aim to address a number of fundamental issues, including: optical absorption and exciton formation; exciton dissociation and charge separation; charge carrier mobility; and charge collection at the electrodes.

We are also particularly interested in donor-acceptor (DA), i.e., low band gap, polymers that have recently garnered considerable use in bulk-heterojunction (BHJ) solar cells because of their wider photon absorption window. These polymers offer the promise of fabricating organic solar cells through solution-processing methods, which can further ease the processing demands and lower production costs. To design materials that improve overall device efficiency, we seek to understand the evolution of the structural, electronic, and optical properties of low band gap polymers that serve as the electron-donor and photon collector in bulk heterojunction solar cells. Recently, we have also become interested in evaluating the impact of coherence effects in the charge-separation process.

Charge and Spin Transport in π-Conjugated Materials

To develop molecular and polymer organic semiconductors with high charge-carrier mobilities in the semiconducting or metallic regime, a major challenge and opportunity lies in the understanding the inherent charge-transport mechanism.  In the absence of chemical and physical defects, the nature of charge transport depends on a subtle interplay between electronic and electron-vibration interactions.  A significant portion of our work centers on determining molecular and crystal electronic structures and evaluating electronic polarization effects in the solid state.  New developments include the evaluation of spin transport properties, as well as the characterization of the parameters describing the charge-voltage curves in organic field-effect transistors.

Organic Electroluminescence for Light-Emitting Diode Applications

Organic light-emitting diodes (OLEDs) offer tremendous potential for use in full-color displays and solid-state lighting. To gain a better understanding of the electronic and optical processes in OLEDs, we investigate numerous aspects, including: charge and energy transfer; aggregation effects on the electronic structure of the ground and excited states; electronic properties of host and guest materials; spin-orbit effects in organic and organo-metallic emitting complexes; and thermally assisted delayed fluorescence.

Two-Dimensional 2D Conjugated Polymers

Novel organic materials based on monolayers of two-dimensional conjugated polymers could provide unusual electronic, optical, electrical, and magnetic properties.  Together with our experimental partners, we are evaluating the impact of the two-dimensional characteristics and the interaction of these 2D polymers with other layered materials.



1139.  “Non-Fullerene Small-Molecule Acceptors for Organic Photovoltaics: Understanding the Impact of Methoxy Substitution Position on Molecular Packing and Electron-Transfer Properties”, T. Wang and J.L. Brédas, Advanced Functional Materials, 29, 1806845/01-08 (2019).

1140.  “Emergence of an Antiferromagnetic Mott Insulating Phase in Hexagonal π-Conjugated Covalent Organic Frameworks”, S. Thomas, H. Li, and J.L. Brédas,
Advanced Materials, 1900355/01-06 (2019).

1141.  "Electronic Structure of Two-Dimensional π-Conjugated Covalent Organic Frameworks", S. Thomas, H. Li, C. Zhong, M. Matsumoto, W. Dichtel, and J.L. Brédas,
Chemistry of Materials, 31, 3051-3065 (2019).

1142.  "Unlocking the Effect of Trivalent Metal Doping in All-Inorganic CsPbBr3 Perovskite", J. Yin, G. Ahmed, O. Bakr, J.L. Brédas, and O. Mohammed,
ACS Energy Letters, 4, 789-795 (2019).

1143.  “Charge-Transfer States at Organic–Organic Interfaces: Impact of Static and Dynamic Disorders”, Z. Zheng, N.R. Tummala, T. Wang, V. Coropceanu, and J.L. Brédas,
Advanced Energy Materials, 1803926/01-07 (2019).

1144.  "Chemical Stabilities of the Lowest Triplet State in Aryl Sulfones and Aryl Phosphine Oxides Relevant to OLED Applications", H. Li, M. Hong, A. Scarpaci, Y. He, C. Risko, J. Sears, S. Barlow, P. Winget, S. Marder, D. Kim, and J.L. Brédas, Chemistry of Materials, 31, 1507-1519 (2019).

1145.  “Dynamically Switching the Electronic and Electrostatic Properties of Indium−Tin Oxide Electrodes with Photochromic Monolayers: Toward Photoswitchable Optoelectronic Devices”, Q. Wang, V. Diez-Cabanes, S. Dell’Elce, A. Liscio, J. Kobin, H. Li, J.L. Brédas, S. Hecht, V. Palermo, E. List-Krotochvil, J. Cornil, N. Koch, and G. Ligorio, ACS Applied Nano Materials, 2, 1102-1110 (2019).

1146.  “Design and Synthesis of Two-Dimensional Covalent Organic Frameworks with Four-Arm Cores: Prediction of Remarkable Ambipolar Charge-Transport Properties”, S. Thomas, H. Li, R.R. Dasari, A.M. Evans, I. Castano, T.G. Allen, O.G. Reid, G. Rumbles, W.R. Dichtel, N.C. Gianneschi, S.R. Marder, V. Coropceanu, and J.L. Brédas, Materials Horizons, 6, 1868-1876 (2019).

1147.  “Nanoscrolls Formed from Two-Dimensional Covalent Organic Frameworks”, H. Li and J.L. Brédas, Chemistry of Materials, 31, 3265-3273 (2019).

1148.  “Quantum Well Energetics of a n=2 Ruddlesden-Popper Phase Perovskite”, S. Silver, Q. Dai, H. Li, J.L. Brédas, and A. Kahn, Advanced Energy Materials, 9, 1901005/01-07 (2019).

1149.  “Charge-Transfer Electronic States in Organic Solar Cells”, V. Coropceanu, X.K. Chen, T.H. Wang, Z.L. Zheng, and J.L. Brédas, Nature Reviews Materials, 4, 689-707 (2019).

1150.  “Synergistic Use of Bithiazole and Pyridinyl Substitution for Effective Electron Transport Polymer Materials”, C. Buckley, S. Thomas, M. McBride, Z. Yuan, G. Zhang, J.L. Brédas, and E. Reichmanis,
Chemistry of Materials, 31, 3957-3966 (2019).

1151.  “Intramolecular Non-covalent Interactions Facilitate Thermally Activated Delayed Fluorescence (TADF)”, X.K. Chen, B. Bakr, M. Auffray, Y. Tsuchiya, C. Sherrill, C. Adachi, and J.L. Brédas,
Journal of Physical Chemistry Letters, 10, 3260-3268 (2019). 

1152.  “All-Polymer Solar Cells: Impact of the Length of the Branched Alkyl Side-Chains on the Polymer Acceptors on the Inter-Chain Packing and Electronic Properties in Amorphous Blends”, T. Wang, V. Coropceanu, and J.L. Brédas, Chemistry of Materials, 31, 6239-6248 (2019).

1153.  “Pathway Complexity in the Stacking of Imine-linked Macrocycles Related to Two-Dimensional Covalent Organic Frameworks”, S.W. Wang, A.D. Chavez, S. Thomas, H. Li, N.C. Flanders, C. Sun, M.J. Strauss, L.X. Chen, A.J. Markvoort, J.L. Brédas, and W.R. Dichtel, Chemistry of Materials, 31, 7104-7111 (2019).

1154.  “Low Energetic Disorder in Small-Molecule Non-Fullerene Electron Acceptors”, G. Kupgan, X.K. Chen, and J.L. Brédas, ACS Materials Letters, 1, 350-353 (2019).

1155.  “Short Excited-State Lifetimes Enable Photo-Oxidatively Stable Rubrene Derivatives”, J. Ly, K. Martin, S. Thomas, M. Yamashita, B.H. Yu, C.A. Pointer, H. Yamada, K.R. Carter, S. Parkin, L. Zhang, J.L. Brédas, E.R. Young, and A.L. Briseno, Journal of Physical Chemistry A, 123, 7558-7566 (2019); correction: 124, 255 (2020).

1156.  “High Stability and Luminescence Efficiency in Donor-Acceptor Neutral Radicals Not Following the Aufbau Principle”, H. Guo, Q. Peng, X.K. Chen, Q. Gu, S. Dong, E.W. Evans, A.J. Gillett, X. Ai, M. Zhang, D. Credgington, V. Coropceanu, R.H. Friend, J.L. Brédas, and F. Li, Nature Materials, 18, 977-984 (2019).  

1157.  “Quantum-Chemical Evaluation of Impact of Chlorination vs. Fluorination on the Electronic Properties of Donors and Acceptors for Organic Solar Cells”, T. Wang and J.L. Brédas,
Advanced Theory and Simulations, 1900136/01-04 (2019).

1158.  “Critical Role of Intermediate Electronic States for Spin-flip Processes in Multi-donor-acceptor Charge-transfer-type Organic Molecules”, H. Noda, X.K. Chen, H. Nakanotani, T. Hosokai, M. Miyajima, N. Notsuka, Y. Kashima, J.L. Brédas, and C. Adachi, Nature Materials, 18, 1084-1090 (2019).

1159.  “Tuning Hot Carrier Cooling Dynamics by Dielectric Confinement in Two-Dimensional Hybrid Perovskite Crystals”, J. Yin, P. Maity, R. Naphade, B. Cheng, J-H. He, O.M. Bakr, J.L. Brédas, O.F. Mohammed, ACS Nano, 13, 12621-12629 (2019).

1160.  “Charge-Transport Properties of F6TNAP-based Charge-Transfer Cocrystals”, R.R. Dasari, X. Wang, R.A. Wiscons, H.F. Haneef, A. Ashokan, Y. Zhang, M.S. Fonari, S. Barlow, V. Coropceanu, T. V. Timofeeva, O.D. Jurchescu, J.L. Brédas, A.J. Matzger, and S.R. Marder,  Advanced Functional Materials, 1904858/01-12 (2019).

1161.  “Local Electronic Structure of Molecular Heterojunctions in a Single-Layer 2D Covalent Organic Framework”, T. Joshi, C.Chen, H.F. Li, C. Diercks, G. Wang, P.J. Waller, H. Li, J.L. Brédas, O.M. Yaghi, and M.F. Crommie, Advanced Materials, 31, 1805941/01-06 (2019).

1162.  “An Electrifying Choice for the 2019 Chemistry Nobel Prize: Goodenough, Whittingham, and Yoshino”, J.L. Brédas, J.M. Buriak, F. Caruso, K.S. Choi, B.A. Korgel, M.R. Palacin, K. Persson, E. Reichmanis, F. Schuth, R. Seshadri, and M. Ward, Chemistry of Materials, 31, 8577-8581 (2019).

1163.  “Chemical Control over Nucleation and Anisotropic Growth of Two-Dimensional Covalent Organic Frameworks”, I. Castano, A.M. Evans, H. Li, E. Vitaku, M.J. Strauss, J.L. Brédas, N.C. Gianneschi, and W.R. Dichtel, ACS Central Science, 5, 1892-1899 (2019).

1164.  “Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells”, A.L. Jones, Z.L. Zheng, P. Riley, I. Pelse, J.X. Zhang, M. Abdelsamie, M.F. Toney, S.R. Marder, F. So, J.L. Brédas, and J.R. Reynolds, Chemistry of Materials, 31, 9729-9741 (2019).

1165.  “Nucleation-Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks”, H. Li, A. M. Evans, I. Castano, M.J. Strauss, W.R. Dichtel, and J.L. Brédas,
Journal of the American Chemical Society, 142, 1367-1374 (2020).

1166.  “Suppression of Concentration Quenching in Ortho-Substituted Thermally Activated Delayed Fluorescence Emitters”, H. Abroshan, E. Cho, V. Coropceanu, and J.L. Brédas,
Advanced Theory and Simulations, 3, 1900185/01-12 (2020).

1167.  “Understanding Charge Transport in Donor/Acceptor Blends from Large-Scale Device Simulations Based on Experimental Film Morphologies”, H.Y. Li, G. Sini, J. Sit, A.J. Moule, and J.L. Brédas,
Energy & Environmental Science, 13, 601-615 (2020).

1168.  “Structural and Electronic Impact of an Asymmetric Organic Ligand in Diammonium Lead Iodide Perovskites”, S. Silver, S.N. Xun, H. Li, J.L. Brédas, and A. Kahn,
Advanced Energy Materials, 1903900/01-06 (2020).

1169.  “Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework”, S. Jhulki, A.M. Evans, X.L. Hao, M.W. Cooper, C.H. Feriante, J. Leisen, H. Li, D. Lam, M.C. Hersam, S. Barlow, J.L. Brédas, W.R. Dichtel, and S.R. Marder, Journal of the American Chemical Society, 142, 783-791 (2020).

1170.  “Revealing the Local Electronic Structure of a Single-layer Covalent Organic Framework through Electronic Decoupling”, D.J. Rizzo, Q. Dai, C. Bronner, G. Veber, B.J. Smith, M Matsumoto6, S. Thomas, G.D. Nguyen, P.R. Forrester, W. Zhao, J.H. Jørgensen, W.R. Dichtel, F.R. Fischer, H. Li, J.L. Brédas, and M.F. Crommie, Nano Letters, 20, 963-970 (2020).

1171.  “Organic Solar Cells Based on Non-fullerene Small-Molecule Acceptors: Impact of Substituent Position”, T. Wang and J.L. Brédas, Matter, 2, 119-135 (2020).

1172.  “Bulk Heterojunction Solar Cells: Insight into Ternary Blends from a Characterization of the Intermolecular Packing and Electronic Properties in the Corresponding Binary Blends”, A. Ashokan, T. Wang, V. Coropceanu, and J.L. Brédas, Advanced Theory and Simulations, 2000049/01-09 (2020).

1173.  “Electronic Structure of Multicomponent Organic Molecular Materials: Evaluation of Range-Separated Hybrid Functionals”, E.K. Cho, V. Coropceanu, and J.L. Brédas, Journal of Chemical Theory and Computation, 16, 3712-3719 (2020).

1174.  “Modulation of Broadband Emissions in Two-Dimensional ⟨100⟩-Oriented Ruddlesden−Popper Hybrid Perovskites”, J. Yin, R. Naphade, L. Gutierrez Arzaluz, J.L. Brédas, O.M. Bakr, and O.F. Mohammed, ACS Energy Letters, 5, 2149-2155 (2020).

1175.  “Radiative and Nonradiative Recombinations in Organic Radical Emitters: The Effect of Guest–Host Interactions”, H. Abroshan, V. Coropceanu, and J.L. Brédas,
Advanced Functional Materials, 2002916/01-10 (2020).

1176.  “Boosting Self-Trapped Emissions in Zero-Dimensional Perovskite Heterostructures”, J. Yin, J.L. Brédas, O.M. Bakr, and O.F. Mohammed, Chemistry of Materials, 32, 5036-5043 (2020).

1177. “Organic Photovoltaics: Relating Chemical Structure, Local Morphology, and Electronic  Properties”, T. Wang, G. Kupgan, and J.L. Brédas, Trends in Chemistry, 2, 535-554 (2020).

1178.  “Dear Materials Community”, J.L. Brédas and S.R. Marder, Materials Horizons, 7, 1933-1934 (2020).

1179.  “Delocalization of Exciton and Electron Wavefunction in Non-fullerene Acceptor Molecules Enables Efficient Organic Solar Cells”, G. Zhang, X.K. Chen, J. Xia, P. C. Y. Chow, M. Ren, G. Kupgan, X. Jiao, C. C. S. Chan, X. Du, R. Xia, Z. Chen, J. Yuan, Y. Zhang, S. Zhang, Y. Liu, Y. Zou, H. Yan, K.S. Wong, V. Coropceanu, N. Li, C. J. Brabec, J.L. Brédas, H.L. Yip, and Y. Cao, Nature Communications, 11, 3943 (2020); DOI: 10.1038/s41467-020-17867-1.

1180.  “Electronic, Vibrational, and Charge-transport Properties of Benzothienobenzothiophene–TCNQ Co-crystals”, A. Ashokan, C. Hanson, N. Corbin, J.L. Brédas, and V. Coropceanu,
Materials Chemistry Frontiers (2020); DOI: 10.1039/d0qm00420k.

1181.  “Fast Spin-flip Enables Efficient and Stable Organic Electroluminescence from Charge-transfer States”, L.S. Cui, A. J. Gillett, S.F. Zhang, H. Ye, Y. Liu, X.K. Chen, Z.S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.L. Brédas, C. Adachi, and R.H. Friend, Nature Photonics (2020); DOI: 10.1038/s41566-020-0668-z.

1182.  “A Novel Mitigation Mechanism for Photo-Induced Trapping in an Anthradithiophene Derivative Using Additives”, I. Nasrallah, M.K. Ravva, K. Broch, J. Novak, J. Armitage, G. Schweicher, A. Sadhanala, J.E. Anthony, J.L. Brédas, and H. Sirringhaus, Advanced Electronic Materials, 2000250/01-09 (2020).

1183.  “Developing Molecular-Level Models for Organic Field-Effect Transistors”, H. Li and J.L. Brédas, National Science Review (2020); DOI: 10.1093/nsr/nwaa167.

1184. “Impact of Secondary Donor Units on the Excited-State Properties and Thermally Activated Delayed Fluorescence (TADF) Efficiency of Pentacarbazole-Benzonitrile Emitters”, E.K. Cho, L. Liu, V. Coropceanu, and J.L. Brédas, Journal of Chemical Physics, 153, 144708/01-09 (2020).

1185. “Thermally Activated Delayed Fluorescence Sensitization for Highly Efficient Blue Fluorescent Emitters”, H. Abroshan, Y. Zhang, X. Zhang, C. Fuentes-Hernandez, S. Barlow, V. Coropceanu, S.R. Marder, B. Kippelen, and J.L. Brédas, Advanced Functional Materials, 2005898/01-10 (2020).

1186. “Organic Neutral Radical Emitters: Impact of Chemical Substitution and Electronic-State Hybridization on the Luminescence Properties”, E.K. Cho, V. Coropceanu, and J.L. Brédas, Journal of the American Chemical Society, 142, 17782-17786 (2020).

1187. “Hyperfluorescence-Based Emission in Purely Organic Materials: Suppression of Energy-Loss Mechanisms via Alignment of Triplet Excited States”, H. Abroshan, V. Coropceanu, and J.L. Brédas, ACS Materials Letters, 2, 1412-1418 (2020).

1188. “Doping Modulation of the Charge Injection Barrier between a Covalent Organic Framework (COF) Monolayer and Graphene”, H. Li, S. Xun, H. Li, and J.L.Brédas, Chemistry of Materials, 32, 9228-9237 (2020).

1189. “Electronically Coupled 2D Polymer/MoS2 Heterostructures”, H.B. Balch, A.M. Evans, R.R. Dasari, H. Li, R. Li, S. Thomas, D. Wang, R.P. Bisbey, K. Slicker, I. Castano, S. Xun, L. Jiang, C. Zhu, N. Gianneschi, D.C.Ralph, J.L.Bréd́as, S.R. Marder, W.R.Dichtel, and F. Wang, Journal of the American Chemical Society, 142, 21131-21139 (2020).

1190. “Mechanism of Formation of Benzotrithiophene-Based Covalent Organic Framework Monolayers on Coinage-Metal Surfaces: C−C Coupling Selectivity and Monomer−Metal Interactions”, D. Zhang,
G.Q. Wang, C. Chen, Trinity Joshi, Xian-Kai Chen, Austin M. Evans, M. Matsumoto, W.R. Dichtel, H. Li, M.F. Crommie, and J.L. Brédas, Chemistry of Materials, 32, 10688-10696 (2020).

1191. “Organic Photovoltaics: Understanding the Preaggregation of Polymer Donors in Solution and Its Morphological Impact”, T. Wang and J.L. Brédas, Journal of the American Chemical Society, 143, 1822-1835 (2021).

1192. “The Role of Intermolecular Interactions on the Performance of Organic Thermally Activated Delayed Fluorescence (TADF) Materials”, E.K. Cho, M. Hong, V. Coropceanu, and J.L. Brédas, Advanced Optical Materials, 2002135/01-10 (2021).

1193. “Quantitative Description of the Lateral Growth of Two-Dimensional Covalent Organic Frameworks Reveals Self-Templation Effects”, H. Li, A.M. Evans, W.R. Dichtel, and J.L. Brédas, ACS Materials Letters, 3, 398-405 (2021).

1194. “Thermally Conductive Ultra-low-k Dielectric Layers Based on Two-dimensional Covalent Organic Frameworks”, A.M. Evans, A. Giri, V.K. Sangwan, S. Xun, M. Bartnof, C.G. Torres-Castanedo, H.B. Balch, M.S. Rahn, N.P. Bradshaw, E. Vitaku, D.W. Burke, H. Li, M.J. Bedzyk, F. Wang, J.L. Brédas, J.A. Malen, A.J.H. McGaughey, M.C. Hersam, W.R. Dichtel, and P.E. Hopkins, Nature Materials, https://doi.org/10.1038/s41563-021-00934-3 (2021).

1195. “Thermally Activated Delayed Fluorescence Properties of Trioxoazatriangulene Derivatives Modified with Electron Donating Groups”, Y. Tsuchiya, Y. Ishikawa, S.H. Lee, X.K. Chen, J.L. Brédas, H. Nakanotani, and C. Adachi, Advanced Optical Materials, 2002174/01-08 (2021).

1196. “Strong Suppression of Thermal Conductivity in the Presence of Long Terminal Alkyl Chains in Low-Disorder Molecular Semiconductors”, E. Selezneva, A. Vercouter, G. Schweicher, V. Lemaur, K.  Broch, A. Antidormi, K. Takimiya, V. Coropceanu, J.L. Brédas, C. Melis, J. Cornil, and H. Sirringhaus, Advanced Materials, in press (2021).

1197. “Molecular Packing in the Active Layers of Organic Solar Cells Based on Non-Fullerene Acceptors: Impact of Isomerization on Charge Transport, Exciton Dissociation, and Non-Radiative Recombination”, G. Kupgan, X.K. Chen, and J.L. Brédas,ACS Applied Energy Materials, 4, 4002-4011 (2021).

1198. “Lower Limits for Non-Radiative Recombination Loss in Organic Donor/Acceptor Complexes”, Y. Liu, Z. Zheng, V. Coropceanu, J.L. Brédas, and D.S. Ginger, Materials Horizons, in press (2021).

1199. “Impact of Chemical Modifications on the Luminescence Properties of Organic Neutral Radical Emitters”, E.K. Cho, M. Hong, V. Coropceanu, and J.L. Brédas, Journal of Materials Chemistry C, DOI: 10.1039/D1TC01702K (2021).

1200. “A Unified Description of Non-Radiative Voltage Losses in Organic Solar Cells”, X.K. Chen, D. Qian, Y. Wang, T. Kirchartz, W. Tress, H. Yao, J. Yuan, M. Hülsbeck, M. Zhang, Y. Zou, Y. Sun, Y.F. Li, J.H. Hou, O. Inganäs, V. Coropceanu, J.L. Brédas, and F. Gao,Nature Energy, DOI: 10.1038/s41560-021-00843-4 (2021).

1201. “Impact of Structural Defects on the Elastic Properties of Two-Dimensional Covalent Organic Frameworks (2D COFs)”, H.Y. Li and J.L. Brédas, Chemistry of Materials, 33, 4529-4540 (2021)