CBC Colloquium Series "From Systems to Structure – How New MS Technology Can Drive Biological Discovery"


3:30 to 4:30 p.m., March 28, 2024
Dr. Coon Headshot


Dr. Joshua Coon

Professor, Biomolecular Chemistry and Chemistry; University of Wisconsin, Madison
Director, NIH National Center for Quantitative Biology of Complex Systems



In this presentation I will provide several examples of how MS technology can drive biological discovery. First, we use a high-throughput proteomic, metabolomic, and lipidomic methodology to profile nearly 1,000 human cell lines that each are missing a mitochondrial gene. Then, using computation and informatics, we combine this dataset to discovery the functions of several genes, linking two of them directly to human disease. Next, we use multiple proteases and extensive MS to provide the deepest coverage and analysis of the human proteome to date – confirming that the majority of spliced RNA molecules do indeed get converted into proteins. Next, we describe use of the Orbitrap Astral hybrid to profile human proteomes in under one hour, profile human plasma at a depth of nearly 7,000 proteins, and measure protein phosphorylation at unprecedented depth and speed. Finally, we present on a modified Orbitrap mass spectrometer that is used to prepared samples for cryoEM. Briefly, protein-protein complexes are ionized using native ESI and then either mass analyzed or landed onto a cryogenically cool EM grid within the MS system. Water vapor is introduced to cover the landed particles with amorphous ice. Following landing, the samples are removed from vacuum and placed in a cryoEM instrument for direct imaging.

Hosted by: Dr. Michael Marty