Faculty Directory

Dennis Lichtenberger

Professor
Degrees and Appointments: 
B.S. 1969, Indiana University, Bloomington
Ph.D. 1974, University of Wisconsin, Madison
Postdoctoral 1974-1976, University of Illinois, Urbana-Champaign
Awards and Honors: 
Fellow of the American Association for the Advancement of Science (AAAS), elected 2015
Fellow of the Galileo Circle, College of Science, elected 2012
Associate Editor, Organometallics, 2008-2014
Chair-elect and Chair, Organometallic Subdivision of the Inorganic Division of the ACS, 2010-2011
Ninth Annual University Graduate and Professional Education Teaching and Mentoring Award, 2008
Coates Lectureship, University of Wyoming, 2006
Plenary Lecturer, Taller de Quimica Cinvestav, Mexico City, 2004
Faculty of Science Distinguished Teaching Award, 1994
Research Summary: 

This research program encompasses studies of organometallic structure, bonding, reactivity, and catalysis and extends to bioorganometallic chemistry, metal-metal bonding, molecular clusters, and related areas. Most recently this research has moved toward electron transfer processes, molecular electronics, and solar fuels. A central theme of this research has been to probe and understand this chemistry at the level of electronic structure. In one sense, all chemical behavior may be viewed as the movement of electrons. An obvious example is the oxidation and reduction processes of metalloenzymes in biology, but so too is the selective making and breaking of bonds in industrial catalysis, the transport of electrons in molecular wires, and the interactions of molecules with light. Chemical reactivity and catalysis depend on mechanisms that move electrons from existing bonds in starting materials to new bonds in desired products. Movement of electrons in materials is important to electrical conductivity and optical properties for technological applications. In biology, electron transfer involving active metal sites is central to many life processes. This research provides fundamental information for understanding all of these processes - the clues for solving the many mysteries of electron behavior in chemistry.

For more information please visit the group website by clicking here.

The research as depicted in the figure above offers opportunities in synthesis of new molecules and materials, electrochemistry, high-resolution gas-phase spectroscopy, ultra-high vacuum surface analysis, computational chemistry, and/or development of new methods and instrumentation. Students choose the projects in which they are most interested, and may focus on inorganic, physical, analytical, organic, or biological chemistry areas. Examples of chemical systems studied in this research program are shown below:

We are particularly interested in molecules that serve as strong electron donors. Electron donors with unprecedented power can unlock many new and important chemical and catalytic processes. In synthesis, electron transfer reactions promote radical intermediates for chemical substitutions, additions, cyclizations, polymerizations, and cascade processes for formation of polycyclic carbon skeletons. In catalysis, multiple electron transfers from strong donors produce fuels and other more complex molecules from simple feedstocks. Nature often achieves these multiple-electron reductions with multiple-metal catalytic active sites, such as the [2Fe-2S] cluster organometallic sites of hydrogenases. We are studying mimics of these sites for the catalytic reduction of protons to hydrogen. In another study, we have shown that dimetal complexes with bicyclic guanidinate ligands (as shown below) are inherently the most powerful and tunable neutral chemical electron donors yet discovered!

Many of the principles of electronic structure and bonding that have been discovered in this research have followed from the development and application of photoelectron spectroscopy, a technique that is often introduced in freshman chemistry texts. Computational chemistry is also an important aspect of this research, and photoelectron spectroscopy is the most direct method to test and validate electron energies in developing computational methods. We have developed instrumentation for gas-phase photoelectron spectroscopy of large molecules that is not matched elsewhere. It is the only instrumentation capable of measuring the ionization energies of many important molecules, including the one pictured. As a consequence, we are often the only source of this information for other researchers. In order to serve the needs for this information, we have established an open-access user facility for gas-phase electron spectroscopy. We have numerous rewarding collaborations with scientists from around the world and often share students with other research groups.

Publications: 

Since 2010

  • Experimental measure of metal-alkynyl electronic structure interactions by photoelectron spectroscopy: (η5-C5H5)Ru(CO)2CCMe and (η5-C5H5)Ru(CO)2]2(μ-CC), Ashley R. Head, Sharon K. Renshaw, Andrew B. Uplinger, Jeffrey R. Lomprey, John P. Selegue and Dennis L. Lichtenberger. Polyhedron, 2015, 86, 141-150. (http://dx.doi.org/10.1016/j.poly.2014.07.020)

  • Through-space interaction mediated by a sulfoxide, G. J. Meyer, Elliott R. Smith, Takahiro Sakamoto, Dennis L. Lichtenberger and Richard S. Glass. Phosphorus Sulfur, 2015, 190, 1242-1246. (http://dx.doi.org/10.1080/10426507.2014.991822)

  • Through space interaction between ferrocenes mediated by a thioether, G. J. Meyer, Gabriel B. Hall, Elliott R. Smith, Takahiro Sakamoto, Dennis L. Lichtenberger and Richard S. Glass. Polyhedron, 2015, 86, 125-132. (http://dx.doi.org/10.1016/j.poly.2014.06.050)

  • From gas-phase ionization energies to solution oxidation potentials: Dimolybdenum tetraformamidinate paddlewheel complexes, Laura O. Van Dorn, Susan C. Borowski and Dennis L. Lichtenberger. Inorg. Chim. Acta, 2015, 424, 316-321. (http://dx.doi.org/10.1016/j.ica.2014.09.021)

  • Phosphine-substituted (η5-pentadienyl) manganese carbonyl complexes: Geometric structures, electronic structures, and energetic properties of the associative substitution mechanism, including isolation of the slipped η3-pentadienyl associative intermediate, de la Cruz Cruz, Jose Ignacio, Patricia Juarez-Saavedra, Brenda Paz-Michel, Marco Leyva-Ramirez, Asha Rajapakshe, Aaron K. Vannucci, Dennis L. Lichtenberger and M. Paz-Sandoval. Organometallics, 2014, 33, 278-288. (http://dx.doi.org/10.1021/om401017t)

  • The 2014 organometallics symposium, John A. Gladysz, Manfred Bochmann, Deryn E. Fogg, Francois P. Gabbai, Dennis L. Lichtenberger, Lanny S. Liebeskind and Daniel J. Mindiola. Organometallics, 2014, 33, 5049-5051. (http://dx.doi.org/10.1021/om500959g)

  • Intramolecular electron transfer in bipyridinium disulfides, Gabriel B. Hall, Rudresha Kottani, Greg A. N. Felton, Takuhei Yamamoto, Dennis H. Evans, Richard S. Glass and Dennis L. Lichtenberger. J. Am. Chem. Soc., 2014, 136, 4012-4018. (http://dx.doi.org/10.1021/ja500087m)

  • Effects of alkane linker length and chalcogen character in FeFe]-hydrogenase inspired compounds, Mohammad K. Harb, Ahmad Daraosheh, Helmar Goerls, Elliott R. Smith, G. J. Meyer, Matthew T. Swenson, Takahiro Sakamoto, Richard S. Glass, Dennis L. Lichtenberger, Dennis H. Evans, Mohammad El-khateeb and Wolfgang Weigand. Heteroat. Chem., 2014, 25, 592-606. (http://dx.doi.org/10.1002/hc.21216)

  • Electrochemical, spectroscopic, and computational study of bis(mu-methylthiolato)diironhexacarbonyl: Homoassociative stabilization of the dianion and a chemically reversible reduction/reoxidation cycle, Orrasa In-noi, Kenneth J. Haller, Gabriel B. Hall, William P. Brezinski, Jacob M. Marx, Taka Sakamoto, Dennis H. Evans, Richard S. Glass and Dennis L. Lichtenberger. Organometallics, 2014, 33, 5009-5019. (http://dx.doi.org/10.1021/om5004122)

  • New author guidelines for 2014: A format for computational structural data that can be opened with freely available programs such as "Mercury", Dennis L. Lichtenberger and John A. Gladysz. Organometallics, 2014, 33, 835. (http://dx.doi.org/10.1021/om500109u)

  • Introduction to the special issue on organometallic electrochemistry, Jiri Ludvi­k, Dennis H. Evans and Dennis L. Lichtenberger. Organometallics, 2014, 33, 4513-4516. (http://dx.doi.org/10.1021/om5008709)

  • Solubilizing the most easily ionized molecules and generating powerful reducing agents, Gina M. Chiarella, F. A. Cotton, Jason C. Durivage, Dennis L. Lichtenberger and Carlos A. Murillo. J. Am. Chem. Soc., 2013, 135, 17889-17896. (http://dx.doi.org/10.1021/ja408291k)

  • Redox chemistry of non−innocent quinones annulated to 2Fe2S cores, Gabriel B. Hall, Jinzhu Chen, Charles A. Mebi, Noriko Okumura, Matthew T. Swenson, Stephanie E. Ossowski, Uzma I. Zakai, Gary S. Nichol, Dennis L. Lichtenberger, Dennis H. Evans and Richard S. Glass. Organometallics, 2013, 32, 6605-6612. (http://dx.doi.org/10.1021/om400913p)

  • The electronic states of pyridine-N-oxide studied by VUV photoabsorption and ab initio configuration interaction computations, Michael H. Palmer, Soren V. Hoffmann, Nykola C. Jones, Elliott R. Smith and Dennis L. Lichtenberger. J. Chem. Phys., 2013, 138, 214317/1-214317/10. (http://dx.doi.org/10.1063/1.4807841)

  • Synthesis and characterization of [FeFe]-hydrogenase mimics appended with a 2-phenylazopyridine ligand, Raphael A. Seidel, Gabriel B. Hall, Matthew T. Swenson, Gary S. Nichol, Dennis L. Lichtenberger, Dennis H. Evans and Richard S. Glass. J. Sulfur Chem., 2013, 34, 566-579. (http://dx.doi.org/10.1080/17415993.2013.796553)

  • {1,1'-(Dimethylsilylene)bismethanechalcogenolato]}diiron complexes [2Fe2E(Si)] (E = S, Se, Te) - FeFe] hydrogenase models, Ulf-Peter Apfel, Helmar Goerls, Greg A. N. Felton, Dennis H. Evans, Richard S. Glass, Dennis L. Lichtenberger and Wolfgang Weigand. Helv. Chim. Acta, 2012, 95, 2168-2175. (http://dx.doi.org/10.1002/hlca.201200429)

  • The inaugural 2012 organometallics symposium, John A. Gladysz, Manfred Bochmann, Francois P. Gabbai, Dennis L. Lichtenberger, Lanny S. Liebeskind and Tobin J. Marks. Organometallics, 2012, 31, 7303-7305. (http://dx.doi.org/10.1021/om300991w)

  • Substituent effects on the electronic characteristics of pentacene derivatives for organic electronic devices: dioxolane-substituted pentacene derivatives with triisopropylsilylethynyl functional groups, Olga Lobanova Griffith, John E. Anthony, Adolphus G. Jones, Ying Shu, and Dennis L. Lichtenberger. J. Am. Chem. Soc., 2012, 134, 14185-14194. (http://dx.doi.org/10.1021/ja3056672)

  • Comparison of S and Se dichalcogenolato [FeFe]-hydrogenase models with central S and Se atoms in the bridgehead chain, Mohammad K. Harb, Jochen Windhager, Tobias Niksch, Helmar Goerls, Takahiro Sakamoto, Elliott R. Smith, Richard S. Glass, Dennis L. Lichtenberger, Dennis H. Evans, Mohammad El-Khateeb and Wolfgang Weigand. Tetrahedron, 2012, 68, 10592-10599. (http://dx.doi.org/10.1016/j.tet.2012.10.021)

  • The electronic states of 1,2,4-triazoles: A study of 1H- and 1-methyl-1,2,4-triazole by vacuum ultraviolet photoabsorption and ultraviolet photoelectron spectroscopy and a comparison with ab initio configuration interaction computations, Michael H. Palmer, Philip J. Camp, Søren Vrønning Hoffmann, Nykola C. Jones, Ashley R. Head, and Dennis L. Lichtenberger. J. Chem. Phys., 2012, 136, 094310 (11 pages). (http://dx.doi.org/10.1063/1.3692164)

  • Catalysis of electrochemical reduction of weak acids to produce H2: Role of O-H...S hydrogen bonding, Jinzhu Chen, Aaron K. Vannucci, Charles A. Mebi, Noriko Okumura, Susan C. Borowski, L. T. Lockett, Matthew Swenson, Dennis L. Lichtenberger, Dennis H. Evans and Richard S. Glass. Phosphorus, Sulfur Silicon Relat. Elem., 2011, 186, 1288-1292. (http://dx.doi.org/10.1080/10426507.2010.523035)

  • Diiron dichalcogenolato (Se and Te) complexes: Models for the active site of [FeFe] hydrogenase, Mohammad K. Harb, Ulf-Peter Apfel, Takahiro Sakamoto, Mohammad El-khateeb and Wolfgang Weigand. Eur. J. Inorg. Chem., 2011, 986-993. (http://dx.doi.org/10.1002/ejic.201001112)

  • Metal-Sulfur Valence Orbital Interaction Energies in Metal–Dithiolene Complexes: Determination of Charge and Overlap Interaction Energies by Comparison of Core and Valence Ionization Energy Shifts, Nicholas J. Wiebelhaus, Matthew A. Cranswick, Eric L. Klein, L. Tori Lockett, Dennis L. Lichtenberger,* and John H. Enemark. Inorg. Chem., 2011, 50, 11021-11031. (http://dx.doi.org/10.1021/ic201566n)

  • Thermodynamics of the metal-hydrogen bonds in(η5-C5H5)M(CO)2H (M = Fe, Ru, Os), Deven P. Estes, Aaron K. Vannucci, Ariel R. Hall, Dennis L. Lichtenberger, Jack R. Norton. Organometallics, 2011, 30, 3444-3447. (http://dx.doi.org/10.1021/om2001519)

  • Assessment of the Electronic Structure of 2,2’-pyridylpyrrolides as Ligands, Jaime A. Flores, José G. Andino, Nikolay P. Tsvetkov, Maren Pink, Robert J. Wolfe, Ashley R. Head, Dennis L. Lichtenberger, Joseph Massa, and Kenneth G. Caulton. Inorg. Chem., 2011, 50, 8121-8131. (http://dx.doi.org/10.1021/ic2005503)

  • The Electronic States of 1,2,3-Triazole Studied by Vacuum UV Photoabsorption and UV Photoelectron Spectroscopy, and a Comparison with ab initio Configuration Interaction Methods, Michael H. Palmer, Søren Vrønning Hoffmann, Nykola C. Jones, Ashley R. Head, Dennis L. Lichtenberger. J. Chem. Phys., 2011, 134, 084309 (13 pages). (http://dx.doi.org/10.1063/1.3549812)

  • Catalysis of Electrochemical Reduction of Weak Acids to Produce H2: Role of O-H•••S Hydrogen Bonding, Jinzhu Chen, Aaron K. Vannucci, Charles A. Mebi, Noriko Okumura, Susan C. Borowski, L. Tori Lockett, Matthew Swenson, Dennis L. Lichtenberger, Dennis H. Evans, and Richard S. Glass. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 186, 1288-1292. Invited paper. (http://dx.doi.org/10.1080/10426507.2010.523035)

  • Dedication to the Special Volume for Dietmar Seyferth. Manfred Bochmann, Maurice Brookhart, John A. Gladysz, Dennis L. Lichtenberger, Lanny S. Liebeskind, Tobin J. Marks, Richard R. Schrock, Dwight A. Sweigart, Kenton H. Whitmire. Organometallics, 2010 29 (21), 4647-4647. (http://dx.doi.org/10.1021/om100975m)

  • Another Great Day for Organometallic Chemistry, John A. Gladysz, Manfred Bochmann, Dennis L. Lichtenberger, Lanny S. Liebeskind, Tobin J. Marks, Dwight A. Sweigart. Organometallics, 2010 29 (22), 5737-5737. (http://dx.doi.org/10.1021/om101007r)

  • Synthesis of Diiron Hydrogenase Mimics Bearing Hydroquinone and Related Ligands. Electrochemical and Computational Studies of the Mechanism of Hydrogen Production and the Role of O–H•••S Hydrogen Bonding, Jinzhu Chen, Aaron K. Vannucci, Charles A. Mebi, Noriko Okumura, Susan C. Borowski, L. Tori Lockett, Dennis L. Lichtenberger, Dennis H. Evans and Richard S. Glass. Organometallics, 2010, 29, 5330-5340.(http://dx.doi.org/10.1021/om100396j) invited paper.

  • Phosphonothioate Hydrolysis through Selective P-S Bond Scission by Molybdenum Metallocenes, Louis Y. Kuo, Curtis P. Smith, Dennis L. Lichtenberger and Ashley R. Head. Main Group Chemistry, 2010, 9, 283-295. (http://dx.doi.org/10.1021/jp103026q)

  • Synthesis and Characterization of [FeFe]-Hydrogenase Models with Bridging Moieties Containing (S, Se) and (S, Te), Mohammad K. Harb, Helmar Gorls, Taka Sakamoto, Greg A. N. Felton, Dennis H. Evans, Richard S. Glass, Dennis L. Lichtenberger, Mohammad El-khateeb, Wolfgang Weigand. Eur. J. Inorg.Chem., 2010, 25, pp 3975-3985http://dx.doi.org/10.1002/ejic.201000278

  • Intermolecular Effects on the Hole States of Triisopropylsilylethynyl-Substituted Oligoacenes,  Olga Lobanova Griffith, Adolphus G. Jones, John E. Anthony, Dennis L. Lichtenberger. J. Phys. Chem. C, 2010, 114 (32), pp 13838-13845. DOI: 10.1021/jp103026q

  • On the Molecular and Electronic Structures of AsP3 and P4, Brandi M. Cossairt, Christopher C. Cummins, Ashley R. Head, Dennis L. Lichtenberger, Raphael J. F. Berger, Stuart A. Hayes, Norbert W. Mitzel, Gang Wu. J. Am. Chem. Soc., 2010, 132 (24), pp 8459–8465. DOI: 10.1021/ja102580d

  • Electronic and geometric effects of phosphatriazaadamantane ligands on the catalytic activity of an [FeFe] hydrogenase inspired complex, Aaron K. Vannucci, Shihua Wang, Gary S. Nichol, Dennis L. Lichtenberger, Dennis H. Evans and Richard S. Glass.  Dalton Trans., 2010, 39, pp 3050-3056. DOI: 10.1039/B921067A

  • Electronic Properties of Pentacene versus Triisopropylsilylethynyl-Substituted Pentacene: Environment-Dependent Effects of the Silyl Substituent, Olga Lobanova Griffith,  John E. Anthony, Adolphus G. Jones, Dennis L. Lichtenberger. J. Am. Chem. Soc., 2010, 132 (2), pp 580–586. DOI: 10.1021/ja906917r
Research Interests Keywords: 
catalysis
electron transfer
photoelectron spectroscopy
electrochemistry
electronic structure
computational chemistry