CBC Special Seminar "ABUSING PEPTIDES FOR MATERIALS SCIENCES: “AN ENTIRE WORLD IN BETWEEN PLASTICS AND PROTEINS”

When

3 to 4 p.m., March 20, 2024

Presenter:

Dr. Hans G. Börner
Image
 
Professor, Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems
 

Abstract:

Bio-inspiration has become one of the key strategies to for the development of advanced functional materials.1, 2 Combining this approach with information-rich macromolecules enables allows for the precise programming of interactions in synthetic materials,3 opening up the functional space for exciting materials science applications.4 To achieve this, the properties of oligopeptides has been exploited.5 By incorporating these as monodisperse segments into synthetic polymers, it has been shown how to program structure formation in polymers,6-8 accurately manage internal interfaces in composites to achieve toughness,9-12 host small organic drugs or lead compounds in a drug structure-specific manner to improve availability or transport13-15 and generate bioactive surfaces to control biological systems.16
However, the most interesting is yet to come, as the field of adhesive engineering could benefit from the use of peptides that enable the synthesis of adhesive materials going far beyond the established class of mussel glue-inspired, L-dihydroxyphenylalanine (Dopa) containing adhesive polymers. The thiol-quinone Michael-polyaddition route was established to develop a generic chemistry for synthesizing artificial mussel-glue proteins17, 18 with complex function, as well as mussel-inspired adhesive polymers from commodity monomers.19, 20 This allows for easy scalability and compatibility with sustainable feedstock materials, paving the way for the next generation of green functional materials.21

References
1. Whitesides, G. M. Interface Focus 2015, 5.
2. Sanchez, C.; Arribart, H.; Guille, M. M. G. Nature Materials 2005, 4, 277.
3. Börner, H. G. Macromol. Rapid Commun. 2011, 32, 115.
4. Börner, H. G.; Kühnle, H.; Hentschel, J. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1.
5. Börner, H. G. Prog. Polym. Sci. 2009, 34, 811.
6. Kühnle, H.; Börner, H. G. Angew. Chem., Int. Ed. 2009, 48, 6431.
7. Kessel, S.; Thomas, A.; Börner, H. G. Angew. Chem., Int. Ed. 2007, 46, 9023.
8. Hentschel, J.; Krause, E.; Börner, H. G. J. Am. Chem. Soc. 2006, 128 7722
9. Hanßke, F.; Kemnitz, E.; Börner, G. H. Small 2015, 11, 4303.
10. Bas, O.; Hanßke, F.; Teoh, S.-H.; Hutmacher, D. W.; Börner, H. G. et al. Biofabrication 2019, 11, 035028.
11. Juds, C.; Schmidt, J.; Weller, M. G.; Conrad, T.; Börner, H. G. et al. J. Am. Chem. Soc. 2020, 142, 10624.
12. Samsoninkova, V.; Wagermaier, W.; Dallmann, A.; Börner, H. G. et al. Soft Matter 2018, 14, 1992.
13. Lawatscheck, C.; Pickhardt, M.; Wieczorek, S.; Grafmüller, A.; Mandelkow, E.; Börner, H. G. Angew. Chem. Int. Edit. 2016, 55, 8752
14. Wieczorek, S.; Dallmann, A.; Kochovski, Z.; Börner, H. G. J. Am. Chem. Soc. 2016, 138, 9349.
15. Wieczorek, S.; Remmler, D.; Masini, T.; Kochovski, Z.; Hirsch, A. K.; Börner, H. G. Bioconjugate Chem. 2017, 28, 760.
16. Remmler, D.; Schwaar, T.; Pickhardt, M.; Donth, C.; Mandelkow, E.; Weller, M. G.; Börner, H. G. J. Controlled Release 2018, 285, 96.
17. Arias, S.; Amini, S.; Krüger, J. M.; Börner, H. G. Soft Matter 2021, 17, 2028.
18. Horsch, J.; Wilke, P.; Pretzler, M.; Seuss, S.; Melnyk, I.; Fery, A.; Rompel, A.; Börner, H. G. Angew. Chem. Int. Edit. 2018, 57, 15728.
19. Krüger, J. M.; Choi, C.-Y.; Wang, P.; Löschke, O.; Auhl, D.; Börner, H. G. Macromolecules 2022, 55, 989.
20. Krüger, J. M.; Börner, H. G. Angew. Chem. Int. Ed. 2021, 60, 6408.
21. Choi, C.-Y.; Lossada, F.; Walter, K.; Fleck-Kunde, T.; Behrens, S.; Meinelt, T.; Falkenhagen, J.; Hiller, M.; Oschkinat, H.; Dallmann, A.; Taden, A.; Börner, H. G. Green Chem 2024, doi.org/10.1039/d3gc03680d.

Hosted by: Dr. Jeff Pyun