Chemistry 480A

Study Guide for Exam 3

1. You should know from memory:
 - The expression for osmotic pressure
 - The Gibbs phase rule
 - The relationship between $K_{\text{thermodynamic}}$ and ΔG°
 - The equation for ΔG when reaction components are not in their standard states
 - The expression for ionic strength
 - The relationship between ΔG° for the cell reaction and the emf of the cell
 - The Nernst equation
 - E° for the standard hydrogen electrode
 - $E^\circ = E_{R}^\circ - E_{L}^\circ$
 - The electrochemical cell conventions

2. You should know how to:
 - Derive the expression for vapor pressure depression (from Raoult’s law)
 - Calculate the osmotic pressure of ionic and nonionic solutions
 - Sketch and/or analyze (both p vs X and T vs X versions of) a two-component liquid-liquid phase diagram
 - Sketch and/or analyze a two-component, liquid-solid phase diagram
 - Identify solid solutions, compound formation, and incongruent melting points in phase diagrams
 - Calculate K from ΔG° and vice versa
 - Calculate K for reactions at temperatures other than 25°C
 - Define a suitable γ^∞ for an ionic compound in water solution
 - Find the expression for a_{salt} for ionic solutions in terms of molality and γ^∞
 - Use the various forms of the Debye-Hückel limiting law to calculate γ^∞ for an ionic compound in solution
 - Incorporate electrical work into the combined first and second laws of thermodynamics
 - Write the cell reaction from the diagram of the cell and vice versa
 - Calculate E° and E for an electrochemical cell
 - Use a table of half-cell reduction potentials
 - Calculate ΔG° or ΔG from E° or E for an electrochemical cell reaction and vice versa
 - Find the equilibrium constant for an electrochemical cell reaction from E°
 - Find ΔS° and ΔH° for an electrochemical cell reaction given $E(T)$
 - Analyze a concentration cell

3. You should understand:
 - What is meant by components, phases and degrees of freedom
 - The origin of the Gibbs phase rule
 - Vapor pressure depression, melting point depression, and boiling point elevation
 - What the symbols $|$ and $\|$ mean in electrochemical cell notation
 - What a liquid junction is
 - The function of a salt bridge