Chemistry 480A
Study Guide for Exam 2

1. You should know from memory:
 The combined first and second laws in differential form (closed system)
 The criteria for equilibrium at constant U and V, at constant T and V, and at constant T and p
 The equation for entropy of mixing
 The definitions of Helmholtz free energy and Gibbs free energy (A and G)
 The third law of thermodynamics
 The formula for entropy of mixing for ideal solutions
 The Gibbs-Helmholtz equation
 The expressions for chemical potential for ideal and nonideal gases and solutions
 The differential form of the combined first and second laws for an open system
 The integrated form of the combined first and second laws for an open system
 The definitions of activity and activity coefficient
 The Clapeyron and Clausius-Clapeyron equations
 The definition of an ideal solution
 Raoult's law
 Henry's law
 The definition of partial molar volume and other partial molar quantities

2. You should know how to:
 Calculate ΔS for various processes at constant p, constant V, or constant T (reversible or irreversible) and for chemical reactions
 Calculate ΔG° and ΔA° for chemical reactions at 25°C, and ΔG° for reactions at other temperatures
 Derive Maxwell's relations from dG, dA, dU, or dH
 Derive the equations for $\left(\frac{\partial U}{\partial V}\right)_T$ and $\left(\frac{\partial H}{\partial p}\right)_T$
 Derive the expression for the adiabatic compressibility, κ_S
 Calculate absolute entropies from heat capacity data and heats of phase transitions
 Calculate G and ΔG° at pressures other than 1 atmosphere
 Calculate the fugacity of a nonideal gas given the equation of state
 Write expressions for H, A, and G from the integrated form for U
 Sketch and/or analyze a one-component phase diagram (p as a function of T)
 Use the Clapeyron and Clausius-Clapeyron equations to calculate various properties of materials
 Calculate the vapor pressure of a substance under an applied external pressure
 Calculate the partial molar volume given appropriate volume and composition data
 Derive expressions for ΔS_{mix}, ΔH_{mix} and etc. for ideal solutions
 Find vapor pressures of, and vapor compositions above, ideal liquid solutions

3. You should understand:
 What ΔA and ΔG measure
 What entropy measures
 The meaning and utility of activity and activity coefficient
 The implications of the Gibbs-Duhem equation
 Vapor pressure
 The triple point, critical point, vapor pressure curve, sublimation curve, and melting curve