1. You should know from memory:
 - the ideal gas, van der Waals, and virial (1/V and p forms) equations of state
 - R in J/K mol and in L atm/K mol
 - the definitions of α and κ_T
 - the definition of the ideal gas temperature scale
 - the algebraic sign conventions on q and w
 - the expressions for pV work
 - the first law of thermodynamics (dU and ΔU forms)
 - the definition of enthalpy, H
 - the definitions of C_v and C_p
 - the expression for the adiabatic expansion of an ideal gas
 - the definition of the coefficient of the Joule-Thompson effect
 - the relationship between C_p and C_v for an ideal gas
 - the definition of the efficiency of a Carnot cycle
 - the general form of the second law of thermodynamics

2. You should know how to:
 - find the critical point of a gas from the equation of state
 - calculate the pV work given the path
 - calculate q_v and q_p for the appropriate paths
 - determine if a differential is an exact differential
 - determine if a function is a state function
 - derive the pV expression for the adiabatic expansion of an ideal gas
 - derive the general expression relating C_p and C_v given the equation of state
 - estimate q_p from q_v for a chemical reaction and vice versa
 - calculate ΔH° and ΔU° from calorimetric data or from tables of ΔH°
 - calculate ΔH° at T_2 from ΔH° at T_1 and C_p data
 - calculate ΔH° from bond energies
 - analyze a Carnot cycle
 - calculate ΔS for various processes at constant p, constant V, or constant T (reversible or irreversible)

3. You should understand:
 - what is an equation of state
 - what is a critical point
 - the law of corresponding states
 - the relationship between heat, work, kinetic energy and potential energy
 - what is a state function
 - what is the experimental result of the Joule expansion
 - the meaning of the term "adiabatic"