Chemistry 480A

Study Guide for Exam 3

1. You should know from memory:
 - The components of the kinetic molecular theory of gases model
 - The origin of Boltzmann's constant, \(k \)
 - The symmetry and properties of the one-dimensional velocity distribution function, \(f(v) \)
 - The formula for the rms velocity of molecules in a gas
 - How to write first, second, and third order rate laws
 - The Arrhenius expression for the reaction rate constant
 - The Michaelis-Menten mechanism for enzyme kinetics

2. You should know how to:
 - Calculate averages given the appropriate probability distribution function
 - Normalize an unnormalized probability distribution function
 - Recognize the formula for the one-dimensional velocity distribution function, \(f(v) \)
 - Recognize the formula for the molecular speed distribution function
 - Recognize the formulas for \(\langle v \rangle \) and \(v_{mp} \)
 - Recognize the formula for the number of collisions of gas molecules with a wall
 - Derive a formula for the molecular speed distribution function in various dimensions
 - Calculate the most probable speed given the speed distribution function
 - Recognize the expressions for \(z_{AA}, z_{AB}, \lambda, Z_{AA} \) and \(Z_{AB} \)
 - Write expressions for reaction velocities
 - Tell the order of a reaction from the rate law
 - Integrate first, second and third order rate laws
 - Calculate half-lives from rate laws
 - Use partial fractions to integrate rate laws
 - Recognize a pseudo first order reaction
 - Determine the reaction rate law from half-lives, by the initial rate method, or from a graph
 - Use Arrhenius theory to relate rate constants to temperature and vice versa
 - Write kinetic expressions for elementary reaction steps
 - Derive a rate law from the elementary steps of a reaction mechanism
 - Find \(k_{ref} \) and the relaxation time for a fast reaction using Eigen's relaxation method
 - Find rate constants for fast reactions from relaxation time vs concentration data

3. You should understand:
 - The mechanical origin of the pressure of a gas
 - Knudsen flow
 - Molecular collision diameters and cross-sections
 - The meaning and need for reduced mass
 - The mean free path, \(\lambda \)
 - What is meant by a rate law
 - First order decay
 - The Arrhenius activation energy
 - What is meant by unimolecular, bimolecular, and termolecular
 - The Lindemann mechanism
 - Microscopic reversibility and the principle of detailed balance