# Minimum Safety Requirements for Toxic, Corrosive and Reactive Compressed Gases



CBC Lab Safety Workshop
Beyond the Basics
Wednesday, March 16, 2011
University of Arizona Student Union
Tucson Room

#### Overview

- Define terms in presentation
- Provide specific gas examples
- Explain need for concern
- Explain general hazard control approach
- Introduce minimum requirements checklist
- Describe an application of requirements
- Campus resources

## Toxic and Highly Toxic Gases <



- Toxic: LC<sub>50</sub> between 200 and 2000 parts per million \*
- Highly toxic: LC<sub>50</sub> of less than 200 parts per million \*

\* when administered continuously by inhalation for one hour to albino rats

## **Corrosive Gases**



 Gases that cause visible destruction or, or irreversible alterations in, living tissue by chemical action at the site of initial contact

# Reactive Gases

 Unstable (reactive): Gases which in the pure state, or as produced or transported, will vigorously polymerize, decompose, condense, or will become self-reactive under conditions of shocks, pressure, or temperature

## Compressed Gases

- Gases or mixture of gases having, in a container, an absolute pressure exceeding
  - 40 psi at 70°F (21.1°C); a gas or mixture of gases having, in a container, an absolute pressure exceeding OR
  - 104 psi at 130°F (54.4°C) regardless of the pressure at 70°F,
- or a liquid having a vapor pressure exceeding 40 psi at 100°F (37.8°C).

## TOXIC, CORROSIVE AND REACTIVE COMPRESSED GASES

(examples)

#### Toxic and Highly Toxic

- carbon monoxide
- arsine
- chlorine
- cyanogen chloride
- diborane
- fluorine
- germane
- phosgene
- hydrogen cyanide
- hydrogen fluoride
- hydrogen selenide
- hydrogen sulfide
- nitric oxide
- nitrogen dioxide
- phosphine

#### Carcinogenic

- 1,3-butadiene
- vinyl chloride
- ethylene oxide



#### Corrosive

- ammonia
- chlorine
- hydrogen fluoride
- sulfur dioxide
- silicon tetrafluoride
- hydrogen chloride
- hydrogen bromide

#### Reactive

- silane
- germane
- dichloroborane
- phosphine
- stibine





- Difficult to contain
  - High vapor pressure (VP)
  - Under pressure
    - e.g., ammonia 114 psi @70°F
    - e.g., nitric oxide, chlorine, hydrogen cyanide 2000 psi
- Large quantity in a small package
  - e.g., 50" ammonia cylinder, 50 lbs liquid or 1039 ft<sup>3</sup> gas

- Low exposure limit
  - e.g., arsine, hydrogen selenide 0.05 ppm (TWA)
  - e.g., cyanogen chloride 0.3 ppm (Ceiling)
  - e.g., fluorine 2 ppm (Ceiling)
  - e.g., ammonia, carbon monoxide 25 ppm (TWA)
  - contrast e.g., acetone 500 ppm (TWA)

- High vapor hazard ratio (VHR)
  - VHR =  $(VP @ temperature of use)(10^6)/atmospheric pressure$ exposure limit
  - e.g., arsine  $(114 \text{ psi})(10^6)/14.7 \text{ psi} = 155 \times 10^6$ 0.05
  - contrast e.g. acetone  $(185 \text{ mm Hg})(10^6)/760 \text{ mm Hg} = 490$

- Some have history of serious incidents
  - e.g., silane







- 6 fatalities from gas cabinet explosions where silane was released unignited into the cabinet (two most recent - Taiwan 2005, India 2007,
- Other major incidents in China and U.S. in 2009

 Some are difficult to detect (i.e., poor warning properties)

```
- e.g.,:
```

- carbon monoxide
- sulfuryl fluoride
- hydrogen sulfide

#### Serious Hazards Require Serious Controls

- Specified Codes and Regulations
  - International Fire Code (IFC 2006)
  - Occupational Safety & Health Administration (OSHA)
- Accepted Consensus Standards/Industry Practice
  - Compressed Gas Association (CGA)
  - Semiconductor Equipment Manufacturers Institute (SEMI)
  - Gas suppliers
- Redundant controls if a single point failure could result in a significant accident or exposure above the occupational exposure limits (OELs)

### **Primary Hazard Controls**

- Minimizing gas quantity
- Enclosing or isolating the source, distribution system and apparatus in which the gas is used

<u>Passive Hazard Controls</u> (require no power or human intervention after initial installation)

Ventilation

<u>Active Hazard Control</u> (rely on the presence of power or human intervention to be effective)

#### **Passive Hazard Controls**

(examples)

- Substitution with non-gaseous compounds
- Dilution in a compatible non-toxic, non-corrosive or non-reactive gas in the cylinder mixed by the vendor (i.e., reduced gas concentration)
- Onsite gas generation
- Quantity limits that can be stored at a given location and used within a reasonable time (i.e., reduced gas amount)
- Restrictive flow orifices (i.e., limited available gas)
- Use of all-welded gas delivery lines (i.e., reduced likelihood of gas leaks)

#### **Active Hazard Controls**

(examples)

- Leak testing using an inert gas
- Ventilation with airflow monitor/alarm (regular testing and calibration)
- Operating at pressures below atmospheric
- Gas monitors (regular testing and calibration)
- Process shut-off devices











#### Minimum Safety Requirements Checklist

(http://risk.arizona.edu/healthandsafety/labchemicalsafety/MinRegforCSL-3ToxicCorrosiveGasUse.pdf)

- Quantity limits
- Personal protection and training
- Indoor cylinder location
- Piping, tubing, valves and fittings
- Equipment maintenance
- Environmental protection
- Label, signs and material safety data sheets
- Separation from incompatible materials
- Cylinder handling and transportation
- Security
- Hazard analysis













#### Carbon Monoxide

- Toxic and flammable compressed gas
- Inhibits the blood from carrying oxygen (brain and heart most susceptible to effects)
- No warning properties
- 76 ft³/ cylinder, 2000 psi
- Exposure limit = 25 ppm (TWA)
- VHR =  $2.3 \times 10^6$































# Chemical Safety Level 3 (CSL-3) Gases/Gas Activities

- The storage or use of compressed pyrophoric gases in flammable concentrations
- The storage or use of compressed highly toxic gases or compressed toxic gases with poor or no warning properties
- The storage or use of compressed gases, which are select carcinogens, reproductive toxins, toxic or corrosive:
  - in quantities greater than 20 ft<sup>3</sup> OR
  - that are plumbed outside of the source exhausted enclosure
- Transfilling

#### Need Help?

- Chris Redondo, URIC Cryogenics & Gas Facility
  - credondo@email.arizona.edu or 621-2374
- Frank Demer, RM&S
  - demer@email.arizona.edu or 621-3585