Carbon-13 NMR vs. 1H NMR

- Abundance ~1%, Frequency ~ ¼ of 1H
 Sensitivity = 1.76×10^{-4} of 1H
- No 13C to 13C Splitting Due to Low Abundance ("Dilute Nucleus")
- Strong 1H to 13C Splitting (~150 Hz One-Bond, 0-10 Hz Two- or Three-Bond)
- Complexity of 1H to 13C Splitting Requires "Decoupling" of Protons
- This is Accomplished by Continuous RF Irradiation of Protons During the Acquisition of the 13C FID
- Carbon-13 is Relaxed by Nearby Protons, So Quaternary Carbons are Very Slow to Relax
- Peak Height (Intensity) is Dominated by Differences in Relaxation, so 13C Spectra Are Not Integrated